378 research outputs found

    The fractional quantum Hall effect: Chern-Simons mapping, duality, Luttinger liquids and the instanton vacuum

    Full text link
    We derive, from first principles, the complete Luttinger liquid theory of abelian quantum Hall edge states. This theory includes the effects of disorder and Coulomb interactions as well as the coupling to external electromagnetic fields. We introduce a theory of spatially separated (individually conserved) edge modes, find an enlarged dual symmetry and obtain a complete classification of quasiparticle operators and tunneling exponents. The chiral anomaly on the edge and Laughlin's gauge argument are used to obtain unambiguously the Hall conductance. In resolving the problem of counter flowing edge modes, we find that the long range Coulomb interactions play a fundamental role. In order to set up a theory for arbitrary filling fractions ν\nu we use the idea of a two dimensional network of percolating edge modes. We derive an effective, single mode Luttinger liquid theory for tunneling processes into the quantum Hall edge which yields a continuous tunneling exponent 1/ν1/\nu. The network approach is also used to re-derive the instanton vacuum or QQ-theory for the plateau transitions.Comment: 36 pages, 7 figures (eps

    (Mis-)handling gauge invariance in the theory of the quantum Hall effect I: Unifying action and the \nu=1/2 state

    Full text link
    We propose a unifying theory for both the integral and fractional quantum Hall regimes. This theory reconciles the Finkelstein approach to localization and interaction effects with the topological issues of an instanton vacuum and Chern-Simons gauge theory. We elaborate on the microscopic origins of the effective action and unravel a new symmetry in the problem with Coulomb interactions which we name F-invariance. This symmetry has a broad range of physical consequences which will be the main topic of future analyses. In the second half of this paper we compute the response of the theory to electromagnetic perturbations at a tree level approximation. This is applicable to the theory of ordinary metals as well as the composite fermion approach to the half-integer effect. Fluctuations in the Chern-Simons gauge fields are found to be well behaved only when the theory is F-invariant.Comment: 20 pages, 6 figures; appendix B revised; submitted to Phys.Rev.

    The problem of Coulomb interactions in the theory of the quantum Hall effect

    Full text link
    We summarize the main ingredients of a unifying theory for abelian quantum Hall states. This theory combines the Finkelstein approach to localization and interaction effects with the topological concept of an instanton vacuum as well as Chern-Simons gauge theory. We elaborate on the meaning of a new symmetry (F\cal F invariance) for systems with an infinitely ranged interaction potential. We address the renormalization of the theory and present the main results in terms of a scaling diagram of the conductances.Comment: 9 pages, 3 figures. To appear in Proceedings of the International Conference "Mesoscopics and Strongly Correlated Electron Systems", July 2000, Chernogolovka, Russi

    Tardos fingerprinting is better than we thought

    Full text link
    We review the fingerprinting scheme by Tardos and show that it has a much better performance than suggested by the proofs in Tardos' original paper. In particular, the length of the codewords can be significantly reduced. First we generalize the proofs of the false positive and false negative error probabilities with the following modifications: (1) we replace Tardos' hard-coded numbers by variables and (2) we allow for independently chosen false positive and false negative error rates. It turns out that all the collusion-resistance properties can still be proven when the code length is reduced by a factor of more than 2. Second, we study the statistical properties of the fingerprinting scheme, in particular the average and variance of the accusations. We identify which colluder strategy forces the content owner to employ the longest code. Using a gaussian approximation for the probability density functions of the accusations, we show that the required false negative and false positive error rate can be achieved with codes that are a factor 2 shorter than required for rigid proofs. Combining the results of these two approaches, we show that the Tardos scheme can be used with a code length approximately 5 times shorter than in the original construction.Comment: Modified presentation of result

    (Mis-)handling gauge invariance in the theory of the quantum Hall effect II: Perturbative results

    Full text link
    The concept of F-invariance, which previously arose in our analysis of the integral and half-integral quantum Hall effects, is studied in 2+2\epsilon spatial dimensions. We report the results of a detailed renormalization group analysis and establish the renormalizability of the (Finkelstein) action to two loop order. We show that the infrared behavior of the theory can be extracted from gauge invariant (F-invariant) quantities only. For these quantities (conductivity, specific heat) we derive explicit scaling functions. We identify a bosonic quasiparticle density of states which develops a Coulomb gap as one approaches the metal-insulator transition from the metallic side. We discuss the consequences of F-invariance for the strong coupling, insulating regime.Comment: 26 pages, 7 figures; minor modifications; submitted to Phys.Rev.

    Intense Reflection of a Relativistic Laser Pulse in Subcritical Plasmas

    Get PDF
    Interaction of relativistic electromagnetic (EM) (laser) pulse with plasmas has been investigated by means of electromagnetic particle-in-cell simulations. When a relativistic laser pulse, stronger than a critical intensity, is injected into a uniform plasma of sub-critical density (nc/4 < n0/γ < nc), strong reflection is observed. The frequency of the back-scattered wave is near the effective electron plasma frequency which is well below its unperturbed value. This novel stimulated scattering instability is recognized as a three-wave parametric resonance decay of the incident wave into an electron-acoustic wave (EAW) (ω << ωp) and a scattered EM Stokes sideband. The slow Stokes lightwave gradually builds up to eventually propagate through the plasma-vacuum interface in a form of short superintense reflectivity bursts of coherent low-frequency EM radiation

    Quantum Key Recycling with 8-state encoding (The Quantum One-Time Pad is more interesting than we thought)

    Get PDF
    Perfect encryption of quantum states using the Quantum One-Time Pad (QOTP) requires two classical key bits per qubit. Almost-perfect encryption, with information-theoretic security, requires only slightly more than 1. We slightly improve lower bounds on the key length. We show that key length n+2log1ε n+2log1ε suffices to encrypt n n qubits in such a way that the cipherstate’s L 1 L1 -distance from uniformity is upperbounded by ε ε . For a stricter security definition involving the ∞ ∞ -norm, we prove sufficient key length n+logn+2log1ε +1+1n log1δ +logln21−ε n+logn+2log1ε+1+1nlog1δ+logln21−ε , where δ δ is a small probability of failure. Our proof uses Pauli operators, whereas previous results on the ∞ ∞ -norm needed Haar measure sampling. We show how to QOTP-encrypt classical plaintext in a nontrivial way: we encode a plaintext bit as the vector ±(1,1,1)∕3 – √ ±(1,1,1)∕3 on the Bloch sphere. Applying the Pauli encryption operators results in eight possible cipherstates which are equally spread out on the Bloch sphere. This encoding, especially when combined with the half-keylength option of QOTP, has advantages over 4-state and 6-state encoding in applications such as Quantum Key Recycling (QKR) and Unclonable Encryption (UE). We propose a key recycling scheme that is more efficient and can tolerate more noise than a recent scheme by Fehr and Salvail. For 8-state QOTP encryption with pseudorandom keys, we do a statistical analysis of the cipherstate eigenvalues. We present numerics up to nine qubits

    A meta-analysis of state-of-the-art electoral prediction from Twitter data

    Get PDF
    Electoral prediction from Twitter data is an appealing research topic. It seems relatively straightforward and the prevailing view is overly optimistic. This is problematic because while simple approaches are assumed to be good enough, core problems are not addressed. Thus, this paper aims to (1) provide a balanced and critical review of the state of the art; (2) cast light on the presume predictive power of Twitter data; and (3) depict a roadmap to push forward the field. Hence, a scheme to characterize Twitter prediction methods is proposed. It covers every aspect from data collection to performance evaluation, through data processing and vote inference. Using that scheme, prior research is analyzed and organized to explain the main approaches taken up to date but also their weaknesses. This is the first meta-analysis of the whole body of research regarding electoral prediction from Twitter data. It reveals that its presumed predictive power regarding electoral prediction has been rather exaggerated: although social media may provide a glimpse on electoral outcomes current research does not provide strong evidence to support it can replace traditional polls. Finally, future lines of research along with a set of requirements they must fulfill are provided.Comment: 19 pages, 3 table

    Liberating Technologies? Perceptions of Government Control and Citizens’ Use of Social Media during the Elections

    Get PDF
    Social media may liberate citizens in societies with stringent media controls and accelerate political democratization. Yet, little is known about the relation between social media use and perceived constraints in a semi-authoritarian system. This study draws on Media System Dependency theory to examine this relation in the context of the 2011 Singapore General Election. Our findings, based on national survey data, suggest that perceived control of traditional media and political activity is positively related to content production on social media as well as the visits to opposition party websites and Facebook pages. Additionally, perceived control of mass media is associated with increased consumption of political content on social media. Perceived control of the Internet reduces rather than increases content production on social media. We argue that social media alters the balance of dependency relationships between the government, media organizations and citizens. They create new, meso level networked avenues for information gathering and participation during the elections

    Beating the news using social media: the case study of American Idol

    Get PDF
    We present a contribution to the debate on the predictability of social events using big data analytics. We focus on the elimination of contestants in the American Idol TV shows as an example of a well defined electoral phenomenon that each week draws millions of votes in the USA. This event can be considered as basic test in a simplified environment to assess the predictive power of Twitter signals. We provide evidence that Twitter activity during the time span defined by the TV show airing and the voting period following it correlates with the contestants ranking and allows the anticipation of the voting outcome. Twitter data from the show and the voting period of the season finale have been analyzed to attempt the winner prediction ahead of the airing of the official result. We also show that the fraction of tweets that contain geolocation information allows us to map the fanbase of each contestant, both within the US and abroad, showing that strong regional polarizations occur. The geolocalized data are crucial for the correct prediction of the final outcome of the show, pointing out the importance of considering information beyond the aggregated Twitter signal. Although American Idol voting is just a minimal and simplified version of complex societal phenomena such as political elections, this work shows that the volume of information available in online systems permits the real time gathering of quantitative indicators that may be able to anticipate the future unfolding of opinion formation events
    corecore