42 research outputs found

    Logic matter : digital logic as heuristics for physical self-guided-assembly

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Architecture; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 123-124).Given the increasing complexity of the physical structures surrounding our everyday environment -- buildings, machines, computers and almost every other physical object that humans interact with -- the processes of assembling these complex structures are inevitably caught in a battle of time, complexity and human/machine processing power. If we are to keep up with this exponential growth in construction complexity we need to develop automated assembly logic embedded within our material parts to aid in construction. In this thesis I introduce Logic Matter as a system of passive mechanical digital logic modules for self-guided-assembly of large-scale structures. As opposed to current systems in self-reconfigurable robotics, Logic Matter introduces scalability, robustness, redundancy and local heuristics to achieve passive assembly. I propose a mechanical module that implements digital NAND logic as an effective tool for encoding local and global assembly sequences. I then show a physical prototype that successfully demonstrates the described mechanics, encoded information and passive self-guided-assembly. Finally, I show exciting potentials of Logic Matter as a new system of computing with applications in space/volume filling, surface construction, and 3D circuit assembly.by Skylar J.E. Tibbits.S.M

    Active Printed Materials for Complex Self-Evolving Deformations

    Get PDF
    We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus

    Things Fall Together

    No full text

    Self-Assembly Lab

    No full text

    Challenges and Opportunities

    Full text link

    Autonomous Assembly

    No full text

    The Self-Assembly Line

    No full text

    What's Next?

    Full text link

    Politics and Printing

    Full text link

    A Model for Intelligence of Large-scale Self-assembly

    No full text
    corecore