455 research outputs found

    Dissolved organic matter thiol concentrations determine methylmercury bioavailability across the terrestrial-marine aquatic continuum

    Get PDF
    The most critical step for methylmercury (MeHg) bioaccumulation in aquatic food webs is phytoplankton uptake of dissolved MeHg. Dissolved organic matter (DOM) has been known to influence MeHg uptake, but the mechanisms have remained unclear. Here we show that the concentration of DOM-associated thiol functional groups (DOM-RSH) varies substantially across contrasting aquatic systems and dictates MeHg speciation and bioavailability to phytoplankton. Across our 20 study sites, DOM-RSH concentrations decrease 40-fold from terrestrial to marine environments whereas dissolved organic carbon (DOC), the typical proxy for MeHg binding sites in DOM, only has a 5-fold decrease. MeHg accumulation into phytoplankton is shown to be directly linked to the concentration of specific MeHg binding sites (DOM-RSH), rather than DOC. Therefore, MeHg bioavailability increases systematically across the terrestrial-marine aquatic continuum as the DOM-RSH concentration decreases. Our results strongly suggest that measuring DOM-RSH concentrations will improve empirical models in phytoplankton uptake studies and will form a refined basis for modeling MeHg incorporation in aquatic food webs under various environmental conditions.Methylmercury is a strong neurotoxin that accumulates in aquatic biota. Here, the authors demonstrate that the concentration of thiol compounds associated with dissolved organic matter controls the bioavailability of methylmercury in aquatic system

    Kvicksilver i mark och vatten

    Get PDF

    The Combined Effect of Hg(II) Speciation, Thiol Metabolism, and Cell Physiology on Methylmercury Formation by Geobacter sulfurreducens

    Get PDF
    The chemical and biological factors controlling microbial formation of methylmercury (MeHg) are widely studied separately, but the combined effects of these factors are largely unknown. We examined how the chemical speciation of divalent, inorganic mercury (Hg(II)), as controlled by low-molecular-mass thiols, and cell physiology govern MeHg formation by Geobacter sulfurreducens. We compared MeHg formation with and without addition of exogenous cysteine (Cys) to experimental assays with varying nutrient and bacterial metabolite concentrations. Cysteine additions initially (0-2 h) enhanced MeHg formation by two mechanisms: (i) altering the Hg(II) partitioning from the cellular to the dissolved phase and/or (ii) shifting the chemical speciation of dissolved Hg(II) in favor of the Hg(Cys)2 complex. Nutrient additions increased MeHg formation by enhancing cell metabolism. These two effects were, however, not additive since cysteine was largely metabolized to penicillamine (PEN) over time at a rate that increased with nutrient addition. These processes shifted the speciation of dissolved Hg(II) from complexes with relatively high availability, Hg(Cys)2, to complexes with lower availability, Hg(PEN)2, for methylation. This thiol conversion by the cells thereby contributed to stalled MeHg formation after 2-6 h Hg(II) exposure. Overall, our results showed a complex influence of thiol metabolism on microbial MeHg formation and suggest that the conversion of cysteine to penicillamine may partly suppress MeHg formation in cysteine-rich environments like natural biofilms

    What happens to trees and soils during five decades of experimental nitrogen loading?

    Get PDF
    High deposition of nitrogen was postulated to drive losses of NO3 - and nutrient base cations, causing soil acidification, nutrient deficiencies reducing tree growth and ultimately tree mortality. We tested these predictions in a uniquely long-term study involving three NH4NO3 addition treatments (N1-N3) in a boreal Pinus sylvestris forest. The lowest level (N1), 30 kg N ha− 1 yr− 1 was applied during 50 years. Twice this rate (N2) was added 38 years, followed by 12 years of recovery, while thrice this rate (N3) was added 20 years followed by 30 years of recovery. We compared tree growth, changes in foliar and soil chemistry among treatments including control plots without N additions. As predicted, the N treatments lowered soil pH and reduced soil base saturation by around 50 %. They also lowered foliar levels of Ca, Mg, K, P and B initially, but after 50 years only Ca and Mg remained lower than in the control. Lack of B motivated a single addition of 2.5 kg ha− 1 after ten years of N treatment. Tree stem growth became and then remained higher in N1 than in the other treatments through the 50 years of treatments. In N2 and N3, foliar δ15N increased during the N-loading phase, but declined during the recovery phase, indicating a return of ectomycorrhizal fungi and their role in tightening the N cycle in N-limited forests. In the terminated, initially highest N treatments, N2 and N3, the trees even show signs of returning to Nlimitation. In these treatments, the soil base saturation remains lower, while the pH was only lower at 0–10 depth in the mineral soil, but not in the 10–20 cm depth horizon or in the superficial organic mor-layer. Accurately documenting the effect of N additions on forest growth required a long-term approach, where reasonable rates of application could be compared with extreme rates. Such long-term experiments are necessary to support forest management in achieving goals for developing future forests as they shift in response to major, global-scale changes

    Sulfide in engineered methanogenic systems - Friend or foe?

    Get PDF
    Sulfide ions are regarded to be toxic to microorganisms in engineered methanogenic systems (EMS), where organic substances are anaerobically converted to products such as methane, hydrogen, alcohols, and carboxylic acids. A vast body of research has addressed solutions to mitigate process disturbances associated with high sulfide levels, yet the established paradigm has drawn the attention away from the multifaceted sulfide interactions with minerals, organics, microbial interfaces and their implications for performance of EMS. This brief review brings forward sulfide-derived pathways other than toxicity and with potential significance for anaerobic organic matter degradation. Available evidence on sulfide reactions with organic matter, interventions with key microbial metabolisms, and interspecies electron transfer are critically synthesized as a guidance for comprehending the sulfide effects on EMS apart from the microbial toxicity. The outcomes identify existing knowledge gaps and specify future research needs as a step forward towards realizing the potential of sulfide-derived mechanisms in diversifying and optimizing EMS applications

    Mercury deposition and redox transformation processes in peatland constrained by mercury stable isotopes

    Get PDF
    Peatland vegetation takes up mercury (Hg) from the atmosphere, typically contributing to net production and export of neurotoxic methyl-Hg to downstream ecosystems. Chemical reduction processes can slow down methyl-Hg production by releasing Hg from peat back to the atmosphere. The extent of these processes remains, however, unclear. Here we present results from a comprehensive study covering concentrations and isotopic signatures of Hg in an open boreal peatland system to identify post-depositional Hg redox transformation processes. Isotope mass balances suggest photoreduction of HgII is the predominant process by which 30% of annually deposited Hg is emitted back to the atmosphere. Isotopic analyses indicate that above the water table, dark abiotic oxidation decreases peat soil gaseous Hg0 concentrations. Below the water table, supersaturation of gaseous Hg is likely created more by direct photoreduction of rainfall rather than by reduction and release of Hg from the peat soil. Identification and quantification of these light-driven and dark redox processes advance our understanding of the fate of Hg in peatlands, including the potential for mobilization and methylation of HgII.Mercury isotope signatures in groundwater, soil gas, solid peat, and atmosphere suggest that dark abiotic reduction of peat soil HgII to volatile Hg0 does not play a significant role in mobilizing Hg during peat mass los

    Formation and mobilization of methylmercury across natural and experimental sulfur deposition gradients

    Get PDF
    We investigated the influence of sulfate (SO42-) deposition and concentrations on the net formation and solubility of methylmercury (MeHg) in peat soils. We used data from a natural sulfate deposition gradient running 300 km across southern Sweden to test the hypothesis posed by results from an experimental field study in northern Sweden: that increased loading of SO42- both increases net MeHg formation and redistributes methylmercury (MeHg) from the peat soil to its porewater. Sulfur concentrations in peat soils correlated positively with MeHg concentrations in peat porewater, along the deposition gradient similar to the response to added SO42- in the experimental field study. The combined results from the experimental field study and deposition gradient accentuate the multiple, distinct and interacting roles of SO42- deposition in the formation and redistribution of MeHg in the environment. (c) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Soil mobility of surface applied polyaromatic hydrocarbons in response to simulated rainfall

    Get PDF
    Polyaromatic hydrocarbons (PAHs) are emitted from a variety of sources and can accumulate on and within surface soil layers. To investigate the level of potential risk posed by surface contaminated soils, vertical soil column experiments were conducted to assess the mobility, when leached with simulated rainwater, of six selected PAHs (naphthalene, phenanthrene, fluoranthene, pyrene, benzo(e)pyrene and benzo(ghi)perylene) with contrasting hydrophobic characteristics and molecular weights/sizes. The only PAH found in the leachate within the experimental period of 26 days was naphthalene. The lack of migration of the other applied PAHs were consistent with their low mobilities within the soil columns which generally parallelled their log Koc values. Thus only 2.3% of fluoranthene, 1.8% of pyrene, 0.2% of benzo(e)pyrene and 0.4% of benzo(ghi)perylene were translocated below the surface layer. The PAH distributions in the soil columns followed decreasing power relationships with 90% reductions in the starting levels being shown to occur within a maximum average depth of 0.94 cm compared to an average starting depth of 0.5 cm. A simple predictive model identifies the extensive time periods, in excess of 10 years, required to mobilise 50% of the benzo(e)pyrene and benzo(ghi)perylene from the surface soil layer. Although this reduces to between 2 and 7 years for fluoranthene and pyrene, it is concluded that the possibility of surface applied PAHs reaching and contaminating a groundwater aquifer is unlikely

    Microbial communities mediating net methylmercury formation along a trophic gradient in a peatland chronosequence

    Get PDF
    Peatlands are generally important sources of methylmercury (MeHg) to adjacent aquatic ecosystems, increasing the risk of human and wildlife exposure to this highly toxic compound. While microorganisms play important roles in mercury (Hg) geochemical cycles where they directly and indirectly affect MeHg formation in peatlands, potential linkages between net MeHg formation and microbial communities involving these microorganisms remain unclear. To address this gap, microbial community composition and specific marker gene transcripts were investigated along a trophic gradient in a geographically constrained peatland chronosequence. Our results showed a clear spatial pattern in microbial community composition along the gradient that was highly driven by peat soil properties and significantly associated with net MeHg formation as approximated by MeHg concentration and %MeHg of total Hg concentration. Known fermentative, syntrophic, methanogenic and iron-reducing metabolic guilds had the strong positive correlations to net MeHg formation, while methanotrophic and methylotrophic microorganisms were negatively correlated. Our results indicated that sulfate reducers did not have a key role in net MeHg formation. Microbial activity as interpreted from 16S rRNA sequences was significantly correlated with MeHg and %MeHg. Our findings shed new light on the role of microbial community in net MeHg formation of peatlands that undergo ontogenetic change
    corecore