518 research outputs found

    Symmetry Scheme for Amino Acid Codons

    Full text link
    Group theoretical concepts are invoked in a specific model to explain how only twenty amino acids occur in nature out of a possible sixty four. The methods we use enable us to justify the occurrence of the recently discovered twenty first amino acid selenocysteine, and also enables us to predict the possible existence of two more, as yet undiscovered amino acids.Comment: 18 pages which include 4 figures & 3 table

    Triplet Leptogenesis in Left-Right Symmetric Seesaw Models

    Full text link
    We discuss scalar triplet leptogenesis in a specific left-right symmetric seesaw model. We show that the Majorana phases that are present in the model can be effectively used to saturate the existing upper limit on the CP-asymmetry of the triplets. We solve the relevant Boltzmann equations and analyze the viability of triplet leptogenesis. It is known for this kind of scenario that the efficiency of leptogenesis is maximal if there exists a hierarchy between the branching ratios of the triplet decays into leptons and Higgs particles. We show that triplet leptogenesis typically favors branching ratios with not too strong hierarchies, since maximal efficiency can only be obtained at the expense of suppressed CP-asymmetries.Comment: 16 pages, 5 figures, published versio

    Implications of LEP Results for SO(10) Grandunification with Two Intermediate Stages

    Full text link
    We consider the breaking of the grand unification group SO(10)SO(10) to the standard model gauge group through several chains containing two intermediate stages. Using the values of the gauge coupling constants at scale MZM_Z derived from recent LEP data, we determine the range of their intermediate and unification scales. In particular, we identify those chains that permit new gauge structure at relatively low energy (1TeV)(\sim 1\, {\rm TeV}).Comment: (LATEX, 9 pages + 3 pages of figures not included) OITS-48

    Possible Candidates for SUSY SO(10) Model with an Intermediate Scale

    Full text link
    We study the possibility of an intermediate scale existing in supersymmetric SO(10) grand unified theories: The intermediate scale is demanded to be around 10^{12} GeV so that neutrinos can obtain masses suitable for explaining the experimental data on the deficit of solar neutrino with Mikheev-Smirnov-Wolfenstein solution and the existence of hot dark matter. We show that any Pati-Salam type intermediate symmetries are excluded by requiring reasonable conditions and only SU(2)L×SU(2)R×SU(3)C×U(1)BLSU(2)_L\times SU(2)_R \times SU(3)_C\times U(1)_{B-L} is likely to be realized as an intermediate symmetry.Comment: LaTeX, 8 pages + 1 uuencoded eps figure (Error corrected

    Z', new fermions and flavor changing processes, constraints on E6_6 models from μ\mu --> eee

    Full text link
    We study a new class of flavor changing interactions, which can arise in models based on extended gauge groups (rank >>4) when new charged fermions are present together with a new neutral gauge boson. We discuss the cases in which the flavor changing couplings in the new neutral current coupled to the ZZ^\prime are theoretically expected to be large, implying that the observed suppression of neutral flavor changing transitions must be provided by heavy ZZ^\prime masses together with small ZZ-ZZ^\prime mixing angles. Concentrating on E6_6 models, we show how the tight experimental limit on μeee\mu \rightarrow eee implies serious constraints on the ZZ^\prime mass and mixing angle. We conclude that if the value of the flavor changing parameters is assumed to lie in a theoretically natural range, in most cases the presence of a ZZ^\prime much lighter than 1 TeV is unlikely.Comment: plain tex, 22 pages + 2 pages figures in PostScript (appended after `\bye'), UM-TH 92-1

    Sterile neutrino dark matter in BLB-L extension of the standard model and galactic 511 keV line

    Get PDF
    Sterile right-handed neutrinos can be naturally embedded in a low scale gauged U(1)BLU(1)_{B-L} extension of the standard model. We show that, within a low reheating scenario, such a neutrino is an interesting candidate for dark matter. We emphasize that if the neutrino mass is of order of MeV, then it accounts for the measured dark matter relic density and also accommodates the observed flux of 511 keV photons from the galactic bulge.Comment: 10 pages, 1 figure, references added, final version appeared in JCA

    A twistor-like D=10 superparticle action with manifest N=8 world-line supersymmetry

    Full text link
    We propose a new formulation of the D=10D=10 Brink-Schwarz superparticle which is manifestly invariant under both the target-space super-Poincar\'e group and the world-line local N=8N=8 superconformal group. This twistor-like construction naturally involves the sphere S8S^8 as a coset space of the D=10D=10 Lorentz group. The action contains only a finite set of auxiliary fields, but they appear in unusual trilinear combinations. The origin of the on-shell D=10D=10 fermionic κ\kappa symmetry of the standard Brink-Schwarz formulation is explained. The coupling to a D=10D=10 super-Maxwell background requires a new mechanism, in which the electric charge appears only on shell as an integration constant.Comment: 22pages, standard LATEX fil

    Flavor Alignment in SUSY GUTs

    Get PDF
    A Supersymmetric Grand unified model is constructed based on SO(10)xSO(10) symmetry in which new types of Yukawa matrices couple standard and exotic fermions. Evolution of these couplings from the Grand Unified scale to the electroweak scale causes some of them to be driven to their fixed points. This solves the supersymmetric alignment problem and ensures that there are no observable flavor changing neutral currents mediated by supersymmetric particles. Fermion hierarchy and neutrino mixing constraints are automatically satisfied in this formalism.Comment: 20 pages, 1 figur

    Maximal supergravity in D=10: forms, Borcherds algebras and superspace cohomology

    Full text link
    We give a very simple derivation of the forms of N=2,D=10N=2,D=10 supergravity from supersymmetry and SL(2,\bbR) (for IIB). Using superspace cohomology we show that, if the Bianchi identities for the physical fields are satisfied, the (consistent) Bianchi identities for all of the higher-rank forms must be identically satisfied, and that there are no possible gauge-trivial Bianchi identities (dF=0dF=0) except for exact eleven-forms. We also show that the degrees of the forms can be extended beyond the spacetime limit, and that the representations they fall into agree with those predicted from Borcherds algebras. In IIA there are even-rank RR forms, including a non-zero twelve-form, while in IIB there are non-trivial Bianchi identities for thirteen-forms even though these forms are identically zero in supergravity. It is speculated that these higher-rank forms could be non-zero when higher-order string corrections are included.Comment: 15 pages. Published version. Some clarification of the tex

    Flavour Issues in Leptogenesis

    Full text link
    We study the impact of flavour in thermal leptogenesis, including the quantum oscillations of the asymmetries in lepton flavour space. In the Boltzmann equations we find different numerical factors and additional terms which can affect the results significantly. The upper bound on the CP asymmetry in a specific flavour is weaker than the bound on the sum. This suggests that -- when flavour dynamics is included -- there is no model-independent limit on the light neutrino mass scale,and that the lower bound on the reheat temperature is relaxed by a factor ~ (3 - 10).Comment: 19 pages, corrected equations for flavour oscillation
    corecore