393 research outputs found
Comment on Neutron-Proton Spin-Correlation Parameter A_{ZZ} at 68 Mev
We present two arguments indicating that the large value for the
mixing parameter at 50 MeV, which the Basel group extracted from their recent
measurement, may be incorrect. First, there are nucleon-nucleon (NN)
potentials which predict the at 50 MeV substantially below the
Basel value and reproduce the Basel data accurately. Second, the large
value for at 50 MeV proposed by the Basel group can only be
explained by a model for the NN interaction which is very unrealistic (no
-meson and essentially a point-like vertex) and overpredicts the
in the energy range where it is well determined (150--500 MeV) by
a factor of two.Comment: 6 pages text (LaTex) and 2 figures (paper, will be faxed upon
request), UI-NTH-930
Can We Extract Lambda-Lambda Interaction from Two-Particle Momentum Correlation ?
We analyze the invariant mass spectrum of Lambda-Lambda in reaction at P(K^+)=1.65 GeV/c by using a combined framework of
IntraNuclear Cascade (INC) model and the correlation function technique. The
observed enhancement at low-invariant masses can be well reproduced with
attractive Lambda-Lambda interactions with the scattering length either in the
range a = -6 \sim -4 fm (no bound state) or a = 7 \sim 12 fm (with bound
state). We also discuss Lambda-Lambda correlation functions in central
relativistic heavy-ion collisions as a possible way to eliminate this discrete
ambiguity.Comment: 4 Pages, LaTeX with psfig, embedded 4 ps figures. Talk given at
KEK-Tanashi Int. Symp. on "Physics of Hadrons and Nuclei", 14-17 Dec. 1998,
Tokyo, Japan, Nuclear Physics A, to appea
SCIENCE, ART AND EDUCATION – THE NEW PARADIGM
Contemporary world is global, interdependent, rapidly changing generating uncertainties compounded by bankrupting nature, destroying human and social capitals. In addition, some sovereign countries possess weapons of mass destruction. It is obvious that the current world is not sustainable, and reduction of threats cannot be achieved within the current paradigm. A new social, economic and political paradigm is required and that can be achieved not by violence, but by more knowledge. Power has shifted from military force to wealth and now to knowledge. Power shift does not merely transfer power, it transforms it. New paradigm is a continuous change, where scientific research, art and education play a dominant role
In-medium nucleon-nucleon potentials in configuration space
Based on the thermodynamic Green function approach two-nucleon correlations
in nuclear matter at finite temperatures are revisited. To this end, we derive
phase equivalent effective -space potentials that include the effect of the
Pauli blocking at a given temperature and density. These potentials enter into
a Schr\"odinger equation that is the -space representation of the
Galitskii-Feynman equation for two nucleons. We explore the analytical
structure of the equation in the complex -plane by means of Jost functions.
We find that despite the Mott effect the correlation with deuteron quantum
numbers are manifested as antibound states, i.e., as zeros of the Jost function
on the negative imaginary axis of the complex momentum space. The analysis
presented here is also suited for Coulombic systems.Comment: 6 pages, 1 table, 4 figure
The XXL Survey: : XXIX. GMRT 610 MHz continuum observations
Accepted for publication in a forthcoming issue of Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.We present the 25 square-degree GMRT-XXL-N 610 MHz radio continuum survey, conducted at 50 cm wavelength with the Giant Metrewave Radio Telescope (GMRT) towards the XXL Northern field (XXL-N). We combined previously published observations of the XMM-Large Scale Structure (XMM-LSS) field, located in the central part of XXL-N, with newly conducted observations towards the remaining XXL-N area, and imaged the combined data-set using the Source Peeling and Atmospheric Modeling (SPAM) pipeline. The final mosaic encompasses a total area of 30:4 square degrees, with rms <150 μJy beam -1 over 60% of the area. The rms achieved in the inner 9.6 square degree area, enclosing the XMM-LSS field, is about 200 μJy beam -1, while that over the outer 12.66 square degree area (which excludes the noisy edges) is about 45 μJy beam -1. The resolution of the final mosaic is 6.5 arcsec. We present a catalogue of 5434 sources detected at ≥7 × rms. We verify, and correct the reliability of, the catalog in terms of astrometry, flux, and false detection rate. Making use of the (to date) deepest radio continuum survey over a relatively large (2 square degree) field, complete at the flux levels probed by the GMRT-XXL-N survey, we also assess the survey's incompleteness as a function of flux density. The radio continuum sensitivity reached over a large field with a wealth of multi-wavelength data available makes the GMRTXXL- N 610 MHz survey an important asset for studying the physical properties, environments and cosmic evolution of radio sources, in particular radio-selected active galactic nuclei (AGN).Peer reviewedFinal Accepted Versio
Charge-Asymmetry of the Nucleon-Nucleon Interaction
Based upon the Bonn meson-exchange model for the nucleon-nucleon ()
interaction, we study systematically the charge-symmetry-breaking (CSB) of the
interaction due to nucleon mass splitting. Particular attention is payed
to CSB generated by the -exchange contribution to the interaction,
diagrams, and other multi-meson-exchanges. We calculate the CSB
differences in the effective range parameters as well as phase shift
differences in , and higher partial waves up to 300 MeV lab. energy. We
find a total CSB difference in the singlet scattering length of 1.6 fm which
explains the empirical value accurately. The corresponding CSB phase-shift
differences are appreciable at low energy in the state. In the other
partial waves, the CSB splitting of the phase shifts is small and increases
with energy, with typical values in the order of 0.1 deg at 300 MeV in and
waves.Comment: 11 pages, RevTex, 14 figure
Charge-Dependence of the Nucleon-Nucleon Interaction
Based upon the Bonn meson-exchange-model for the nucleon-nucleon ()
interaction, we calculate the charge-independence breaking (CIB) of the
interaction due to pion-mass splitting. Besides the one-pion-exchange (OPE), we
take into account the -exchange model and contributions from three and
four irreducible pion exchanges. We calculate the CIB differences in the
effective range parameters as well as phase shift differences for
partial waves up to total angular momentum J=4 and laboratory energies below
300 MeV. We find that the CIB effect from OPE dominates in all partial waves.
However, the CIB effects from the model are noticable up to D-waves and
amount to about 40% of the OPE CIB-contribution in some partial waves, at 300
MeV. The effects from 3 and 4 contributions are negligible except in
and .Comment: 12 pages, RevTex, 14 figure
The nucleon-nucleon interaction
We review the major progress of the past decade concerning our understanding
of the nucleon-nucleon interaction. The focus is on the low-energy region
(below pion production threshold), but a brief outlook towards higher energies
is also given. The items discussed include charge-dependence, the precise value
of the coupling constant, phase shift analysis and high-precision NN
data and potentials. We also address the issue of a proper theory of nuclear
forces. Finally, we summarize the essential open questions that future research
should be devoted to.Comment: 42 pages, 12 figures, iopart.cls style; Topical Review prepared for
J. Phys. G: Nucl. Part. Phy
- …
