768 research outputs found
Rolling resistance of electric vehicle tires from track tests
Special low-rolling-resistance tires were made for DOE's ETV-1 electric vehicle. Tests were conducted on these tires and on a set of standard commercial automotive tires to determine the rolling resistance as a function of time during both constant-speed tires and SAE J227a driving cycle tests. The tests were conducted on a test track at ambient temperatures that ranged from 15 to 32 C (59 to 89 F) and with tire pressures of 207 to 276 kPa (30 to 40 psi). At a contained-air temperature of 38 C (100 F) and a pressure of 207 kPa (30 psi) the rolling resistances of the electric vehicle tires and the standard commercial tires, respectively, were 0.0102 and 0.0088 kilogram per kilogram of vehicle weight. At a contained-air temperature of 38 C (100 F) and a pressure of 276 kPa (40 psi) the rolling resistances were 0.009 and 0.0074 kilogram per kilogram of vehicle weight, respectively
S-adenosyl-l-methionine: (S) -7,8,13, 14-tetrahydroberberine--n-methyltransferase, a branch point enzyme in the biosynthesis of benzophenanthridine and protopine alkaloids.
The enzyme which transfers the CH3-group of S-adenosylmethionine to the nitrogen atom of (S)-tetrahydroberberine and (S)-stylopine is found to occur in a number of plant cell cultures originating from species containing alkaloids; it is located at an important branch point in isoquinoline alkaloid biosynthesis
Performance of conventionally powered vehicles tested to an electric vehicle test procedure
A conventional Volkswagen transporter, a Renault 5, a Pacer, and a U. S. Postal Service general DJ-5 delivery van were treated to an electric vehicle test procedure in order to allow direct comparison of conventional and electric vehicles. Performance test results for the four vehicles are presented
Recommended from our members
Automation of a Positron-emission Tomography (PET) Radiotracer Synthesis Protocol for Clinical Production.
The development of new positron-emission tomography (PET) tracers is enabling researchers and clinicians to image an increasingly wide array of biological targets and processes. However, the increasing number of different tracers creates challenges for their production at radiopharmacies. While historically it has been practical to dedicate a custom-configured radiosynthesizer and hot cell for the repeated production of each individual tracer, it is becoming necessary to change this workflow. Recent commercial radiosynthesizers based on disposable cassettes/kits for each tracer simplify the production of multiple tracers with one set of equipment by eliminating the need for custom tracer-specific modifications. Furthermore, some of these radiosynthesizers enable the operator to develop and optimize their own synthesis protocols in addition to purchasing commercially-available kits. In this protocol, we describe the general procedure for how the manual synthesis of a new PET tracer can be automated on one of these radiosynthesizers and validated for the production of clinical-grade tracers. As an example, we use the ELIXYS radiosynthesizer, a flexible cassette-based radiochemistry tool that can support both PET tracer development efforts, as well as routine clinical probe manufacturing on the same system, to produce [18F]Clofarabine ([18F]CFA), a PET tracer to measure in vivo deoxycytidine kinase (dCK) enzyme activity. Translating a manual synthesis involves breaking down the synthetic protocol into basic radiochemistry processes that are then translated into intuitive chemistry "unit operations" supported by the synthesizer software. These operations can then rapidly be converted into an automated synthesis program by assembling them using the drag-and-drop interface. After basic testing, the synthesis and purification procedure may require optimization to achieve the desired yield and purity. Once the desired performance is achieved, a validation of the synthesis is carried out to determine its suitability for the production of the radiotracer for clinical use
Control of hyperglycaemia in paediatric intensive care (CHiP): study protocol.
BACKGROUND: There is increasing evidence that tight blood glucose (BG) control improves outcomes in critically ill adults. Children show similar hyperglycaemic responses to surgery or critical illness. However it is not known whether tight control will benefit children given maturational differences and different disease spectrum. METHODS/DESIGN: The study is an randomised open trial with two parallel groups to assess whether, for children undergoing intensive care in the UK aged <or= 16 years who are ventilated, have an arterial line in-situ and are receiving vasoactive support following injury, major surgery or in association with critical illness in whom it is anticipated such treatment will be required to continue for at least 12 hours, tight control will increase the numbers of days alive and free of mechanical ventilation at 30 days, and lead to improvement in a range of complications associated with intensive care treatment and be cost effective. Children in the tight control group will receive insulin by intravenous infusion titrated to maintain BG between 4 and 7.0 mmol/l. Children in the control group will be treated according to a standard current approach to BG management. Children will be followed up to determine vital status and healthcare resources usage between discharge and 12 months post-randomisation. Information regarding overall health status, global neurological outcome, attention and behavioural status will be sought from a subgroup with traumatic brain injury (TBI). A difference of 2 days in the number of ventilator-free days within the first 30 days post-randomisation is considered clinically important. Conservatively assuming a standard deviation of a week across both trial arms, a type I error of 1% (2-sided test), and allowing for non-compliance, a total sample size of 1000 patients would have 90% power to detect this difference. To detect effect differences between cardiac and non-cardiac patients, a target sample size of 1500 is required. An economic evaluation will assess whether the costs of achieving tight BG control are justified by subsequent reductions in hospitalisation costs. DISCUSSION: The relevance of tight glycaemic control in this population needs to be assessed formally before being accepted into standard practice
Combination of optison with ultrasound and electroporation increases albumin and thrompoietin transgene expression whilst elongation factor promoter prolongs its duration
Hypoalbuminaemia and thrombocytopaenia are two clinical problems frequently encountered in patients with chronic liver failure or cancer following treatment with chemotherapy. The current study was designed to assess the
magnitude and duration of thrombopoietin and albumin transgene expression hoping to increase the production of
albumin and platelets. Immunocompetent and immunocompromised (nude) mice were injected intramuscularly
with plasmids expressing either human serum albumin or human thrombopoietin. The therapeutic expression cassette of the plasmids was driven by either CMV or elongation factor 1- promoters respectively. In order to achieve muscle specific expression both gene constructs included the myosin light chain enhancer. The experiment was conducted in a group of mice which were injected with the transgene plasmid either in normal saline or plasmid
followed by electroporation, ultrasound, optison and a combination of all three to increase transgene expression.
The result showed that plasmids with the CMV promoter induced the highest transgenic expression lasting for one
week whilst plasmids with the elongation factor 1-alpha promoter produced a weaker expression lasting for a longer and more stable duration of expression up to 3 months in both immunocompetent and nude mice. The combination of electroporation and ultrasound with Optison TM provided the highest transgene expression. We concluded that it would be possible to increase albumin and platelets production by an intramuscular injection of plasmids expressing human albumin and thromopoietin. A combination of electroporation and ultrasound with Optison TM can increase their expression
Recommended from our members
Bio-efficacy of hydroxy-selenomethionine as a selenium supplement in pregnant dairy heifers and on the selenium status of their calves
This study aimed to determine the effects of supplementing pregnant heifers with the organic selenium source 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) during last eight weeks of pregnancy on dam and calf Se status. A total of 42 in-calf heifers were recruited to the study and randomly allocated to one of three treatments; a negative control (Con), sodium selenite (NaSe) or HMSeBA. Animals were blocked by body weight, body condition score, and expected calving date prior to treatment allocation. Following enrollment all animals underwent a seven week wash-out period after which they received their respective supplements, topped dressed daily onto a basal diet for the last eight weeks of pregnancy. Heifer blood samples were taken at weekly intervals from enrollment until two weeks before expected calving date, and as soon as possible after calving for determination of whole blood glutathione peroxidase activity (GSH-Px) and plasma selenium (Se) and malondealdehyde (MDA) concentrations. Selenized amino acids were determined in plasma samples taken at three weeks pre-calving. A colostrum sample was taken as close to parturition as possible for determination of colostrum total Se, selenized amino acid, and Immunoglobulin G (IgG) concentration. Calves were blood sampled as close to birth as possible for determination of whole blood GSH-Px activity and plasma Se and MDA concentration. Differences in whole blood GSH-Px activity did not become apparent until calving; GSH-Px activity was lowest in Con heifers (P < 0.05) but similar between NaSe and HMSeBA. Plasma Se was lowest in unsupplemented heifers and greatest in those supplemented with HMSeBA (P < 0.001) and this was attributable to greater selenomethionine concentrations in the plasma of HMSeBA heifers (P < 0.01). Colostrum Se was lowest in Con heifers and greatest in HMSeBA (P < 0.001), the greater Se concentration of HMSeBA heifers was attributable to a greater proportion of total Se comprising selenocysteine (P = 0.061), the reason for this is not known. There was no effect of supplementation on colostrum IgG concentration. Plasma Se was lowest in those calves born to Con heifers and greatest in those born to HMSeBA heifers (P < 0.001). There were no effects of treatment on calf whole blood GSH-Px activity or plasma MDA concentration. The enhanced Se status associated with HMSeBA supplementation is likely a consequence of selenomethionine supply and may confer benefits to both the dam and her calf post-partum
Running across the Silurian/Devonian Boundary along Northern Gondwana: A Conodont Perspective
The Global Stratotype Section and Point (GSSP) of the Silurian/Devonian boundary, Lower Devonian Series and Lochkovian Stage was formally placed in 1977 at Klonk, in the Czech Republic, at the first appearance of the graptolite Uncinatograptus uniformis uniformis (Přibyl). However, since then, correlation of this limit has been often hampered in carbonate facies where graptolites are uncommon or totally absent. A large calcareous deposition occurred at the Silurian/Devonian boundary along the northern and peri-Gondwana margin, thus representing an ideal location to select and test a possible additional biostratigraphic marker of the limit among conodonts. The first appearance of Caudicriodus hesperius almost simultaneously at the base of the Devonian in Bohemia, the Carnic Alps, Sardinia, Morocco and elsewhere indicates that this taxon is the conodont that best approximates the beginning of the Period. The first or last appearance of other species (e.g., Ozarkodina confluens, Zieglerodina klonkensis, Z. remscheidensis and Caudicriodus woschmidti) may help to recognise the boundary as well
Recommended from our members
Genetic Analysis of Human Traits In Vitro: Drug Response and Gene Expression in Lymphoblastoid Cell Lines
Lymphoblastoid cell lines (LCLs), originally collected as renewable sources of DNA, are now being used as a model system to study genotype–phenotype relationships in human cells, including searches for QTLs influencing levels of individual mRNAs and responses to drugs and radiation. In the course of attempting to map genes for drug response using 269 LCLs from the International HapMap Project, we evaluated the extent to which biological noise and non-genetic confounders contribute to trait variability in LCLs. While drug responses could be technically well measured on a given day, we observed significant day-to-day variability and substantial correlation to non-genetic confounders, such as baseline growth rates and metabolic state in culture. After correcting for these confounders, we were unable to detect any QTLs with genome-wide significance for drug response. A much higher proportion of variance in mRNA levels may be attributed to non-genetic factors (intra-individual variance—i.e., biological noise, levels of the EBV virus used to transform the cells, ATP levels) than to detectable eQTLs. Finally, in an attempt to improve power, we focused analysis on those genes that had both detectable eQTLs and correlation to drug response; we were unable to detect evidence that eQTL SNPs are convincingly associated with drug response in the model. While LCLs are a promising model for pharmacogenetic experiments, biological noise and in vitro artifacts may reduce power and have the potential to create spurious association due to confounding.Molecular and Cellular Biolog
Endothelial protein C receptor expression after cardiopulmonary bypass in adult cardiac surgical patients
- …
