473 research outputs found

    DELINEATION OF TRACKS OF HEAVY COSMIC RAYS AND NUCLEAR PROCESSES WITHIN LARGE SILVER CHLORIDE CRYSTALS

    Get PDF
    Delineation of tracks of heavy cosmic rays and nuclear processes with in large silver chloride crystal

    The effect of signal acquisition and processing choices on ApEn values: Towards a “gold standard” for distinguishing effort levels from isometric force records

    Get PDF
    Approximate Entropy (ApEn) is frequently used to identify changes in the complexity of isometric force records with ageing and disease. Different signal acquisition and processing parameters have been used, making comparison or confirmation of results difficult. This study determined the effect of sampling and parameter choices by examining changes in ApEn values across a range of submaximal isometric contractions of the First Dorsal Interosseus. Reducing the sample rate by decimation changed both the value and pattern of ApEn values dramatically. The pattern of ApEn values across the range of effort levels was not sensitive to the filter cut-off frequency, or the criterion used to extract the section of data for analysis. The complexity increased with increasing effort levels using a fixed ‘r’ value (which accounts for measurement noise) but decreased with increasing effort level when ‘r’ was set to 0.1 of the standard deviation of force. It is recommended isometric force records are sampled at frequencies >200 Hz, template length (‘m’) is set to 2, and 'r' set to measurement system noise or 0.1 SD depending on physiological process to be distinguished. It is demonstrated that changes in ApEn across effort levels are related to changes in force gradation strategy

    Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity

    Get PDF
    Aims: The aim of this work was to analyse the antimicrobial properties of a purified lectin from Eugenia uniflora L. seeds. Methods and Results: The E. uniflora lectin (EuniSL) was isolated from the seed extract and purified by ion-exchange chromatography in DEAE-Sephadex with a purification factor of 11·68. The purified lectin showed a single band on denaturing electrophoresis, with a molecular mass of 67 kDa. EuniSL agglutinated rabbit and human erythrocytes with a higher specificity for rabbit erythrocytes. The haemagglutination was not inhibited by the tested carbohydrates but glycoproteins exerted a strong inhibitory action. The lectin proved to be thermo resistant with the highest stability at pH 6·5 and divalent ions did not affect its activity. EuniSL demonstrated a remarkable nonselective antibacterial activity. EuniSL strongly inhibited the growth of Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella sp. with a minimum inhibitory concentration (MIC) of 1·5 μg ml−1, and moderately inhibited the growth of Bacillus subtilis, Streptococcus sp. and Escherichia coli with a MIC of 16·5 μg ml−1. Conclusions: EuniSL was found to be effective against bacteria. Significance and Impact of the Study: The strong antibacterial activity of the studied lectin indicates a high potential for clinical microbiology and therapeutic applications.VALNATURA of ALFA Programme; Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq

    Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching

    Get PDF
    We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed

    Developing Financial Benchmarks for Critical Access Hospitals

    Get PDF
    This study developed and applied benchmarks for five indicators included in the CAH Financial Indicators Report, an annual, hospital-specific report distributed to all critical access hospitals (CAHs). An online survey of Chief Executive Officers and Chief Financial Officers was used to establish benchmarks. Indicator values for 2004, 2005, and 2006 were calculated for 421 CAHs and hospital performance was compared to the benchmarks. Although many hospitals performed better than benchmark on one indicator in 1 year, very few performed better than benchmark on all five indicators in all 3 years. The probability of performing better than benchmark differed among peer groups

    Force variability during isometric wrist flexion in highly skilled and sedentary individuals

    Get PDF
    The association of expertness in specific motor activities with a higher ability to sustain a constant application of force, regardless of muscle length, has been hypothesized. Ten highly skilled (HS group) young tennis and handball athletes and 10 sedentary (S group) individuals performed maximal and submaximal (5, 10, 20, 50, and 75% of the MVC) isometric wrist flexions on an isokinetic dynamometer (Kin-Com, Chattanooga). The wrist joint was fixed at five different angles (230, 210, 180, 150, and 1300). For each position the percentages of the maximal isometric force were calculated and participants were asked to maintain the respective force level for 5 s. Electromyographic (EMG) activation of the Flexor Carpi Ulnaris and Extensor Digitorum muscles was recorded using bipolar surface electrodes. No significant differences were observed in maximal isometric strength between HS and S groups. Participants of HS group showed significantly (P < 0.05) smaller force coefficient of variability (CV) and SD values at all submaximal levels of MVC at all wrist angles. The CV and SD values remained unaltered regardless of wrist angle. No difference in normalized agonist and antagonist EMG activity was observed between the two groups. It is concluded that long-term practice could be associated with decreased isometric force variability independently from muscular length and coactivation of the antagonist muscles

    Movement Behavior of High-Heeled Walking: How Does the Nervous System Control the Ankle Joint during an Unstable Walking Condition?

    Get PDF
    The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking
    corecore