16 research outputs found
Transcranial Magnetic Stimulation for Post-traumatic Stress Disorder
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that causes significant functional impairment and is related to altered stress response and reinforced learned fear behavior. PTSD has been found to impact three functional networks in the brain: default mode, executive control, and salience. The executive control network includes the dorsolateral prefrontal cortex (DLPFC) and lateral PPC. The salience network involves the anterior cingulate cortex, anterior insula, and amygdala. This latter network has been found to have increased functional connectivity in PTSD. Transcranial Magnetic Stimulation (TMS) is a technique used in treating PTSD and involves stimulating specific portions of the brain through electromagnetic induction. Currently, high-frequency TMS applied to the left dorsolateral prefrontal cortex (DLPFC) is approved for use in treating major depressive disorder (MDD) in patients who have failed at least one medication trial. In current studies, high-frequency stimulation has been shown to be more effective in PTSD rating scales posttreatment than low-frequency stimulation. The most common side effect is headache and scalp pain treated by mild analgesics. Seizures are a rare side effect and are usually due to predisposing factors. Studies have been done to assess the overall efficacy of TMS. However, results have been conflicting, and sample sizes were small. More research should be done with larger sample sizes to test the efficacy of TMS in the treatment of PTSD. Overall, TMS is a relatively safe treatment. Currently, the only FDA- approved to treat refractory depression, but with the potential to treat many other conditions
Expert nurses’ use of implicit memory in the care of patients with Alzheimer's disease
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73899/1/j.1365-2648.2006.03864.x.pd
Endometriosis is a common denominator in unexplained pregnancy loss and infertility based on BCL6 testing
Transcranial Magnetic Stimulation for Post-traumatic Stress Disorder
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that causes significant functional impairment and is related to altered stress response and reinforced learned fear behavior. PTSD has been found to impact three functional networks in the brain: default mode, executive control, and salience. The executive control network includes the dorsolateral prefrontal cortex (DLPFC) and lateral PPC. The salience network involves the anterior cingulate cortex, anterior insula, and amygdala. This latter network has been found to have increased functional connectivity in PTSD. Transcranial Magnetic Stimulation (TMS) is a technique used in treating PTSD and involves stimulating specific portions of the brain through electromagnetic induction. Currently, high-frequency TMS applied to the left dorsolateral prefrontal cortex (DLPFC) is approved for use in treating major depressive disorder (MDD) in patients who have failed at least one medication trial. In current studies, high-frequency stimulation has been shown to be more effective in PTSD rating scales posttreatment than low-frequency stimulation. The most common side effect is headache and scalp pain treated by mild analgesics. Seizures are a rare side effect and are usually due to predisposing factors. Studies have been done to assess the overall efficacy of TMS. However, results have been conflicting, and sample sizes were small. More research should be done with larger sample sizes to test the efficacy of TMS in the treatment of PTSD. Overall, TMS is a relatively safe treatment. Currently, the only FDA- approved to treat refractory depression, but with the potential to treat many other conditions.</jats:p
Transcranial Magnetic Stimulation for Post-traumatic Stress Disorder
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that causes significant functional impairment and is related to altered stress response and reinforced learned fear behavior. PTSD has been found to impact three functional networks in the brain: default mode, executive control, and salience. The executive control network includes the dorsolateral prefrontal cortex (DLPFC) and lateral PPC. The salience network involves the anterior cingulate cortex, anterior insula, and amygdala. This latter network has been found to have increased functional connectivity in PTSD. Transcranial Magnetic Stimulation (TMS) is a technique used in treating PTSD and involves stimulating specific portions of the brain through electromagnetic induction. Currently, high-frequency TMS applied to the left dorsolateral prefrontal cortex (DLPFC) is approved for use in treating major depressive disorder (MDD) in patients who have failed at least one medication trial. In current studies, high-frequency stimulation has been shown to be more effective in PTSD rating scales posttreatment than low-frequency stimulation. The most common side effect is headache and scalp pain treated by mild analgesics. Seizures are a rare side effect and are usually due to predisposing factors. Studies have been done to assess the overall efficacy of TMS. However, results have been conflicting, and sample sizes were small. More research should be done with larger sample sizes to test the efficacy of TMS in the treatment of PTSD. Overall, TMS is a relatively safe treatment. Currently, the only FDA- approved to treat refractory depression, but with the potential to treat many other conditions
Do bone geometric properties of the proximal femoral diaphysis reflect loading history, muscle properties, or body dimensions?
Abstract
Objectives: The aim of this study was to investigate activity‐induced effects from bone geometric properties of the proximal femur in athletic vs nonathletic healthy females by statistically controlling for variation in body size, lower limb isometric, and dynamic muscle strength, and cross‐sectional area of Musculus gluteus maximus.
Methods: The material consists of hip and proximal thigh magnetic resonance images of Finnish female athletes (N = 91) engaged in either high jump, triple jump, soccer, squash, powerlifting, endurance running or swimming, and a group of physically active nonathletic women (N = 20). Cross‐sectional bone geometric properties were calculated for the lesser trochanter, sub‐trochanter, and mid‐shaft of the femur regions. Bone geometric properties were analyzed using a general linear model that included body size, muscle size, and muscle strength as covariates.
Results: Body size and isometric muscle strength were positively associated with bone geometric properties at all three cross‐sectional levels of the femur, while muscle size was positively associated with bone properties only at the femur mid‐shaft. When athletes were compared to nonathletic females, triple jump, soccer, and squash resulted in greater values in all studied cross‐sections; high jump and endurance running resulted in greater values at the femoral mid‐shaft cross‐section; and swimming resulted in lower values at sub‐trochanter and femur mid‐shaft cross‐sections.
Conclusions: Activity effects from ground impact loading were associated with higher bone geometric values, especially at the femur mid‐shaft, but also at lesser and sub‐trochanter cross‐sections. Bone geometric properties along the femur can be used to assess the mechanical stimuli experienced, where ground impact loading seems to be more important than muscle loading
Standardisation in 3D Geometric Morphometrics: Ethics, Ownership, and Methods
The collection and analysis of 3D digital data is a rapidly growing field in archaeology, anthropology, and forensics. Even though the 3D scanning of human remains in archaeology has been conducted for over 10 years, it is still frequently considered as a new field. Despite this, the availability of 3D scanning equipment and the number of studies employing these methods are increasing rapidly, and it is arguably damaging to the validity of this field to continue to consider these methods new and therefore not subject to the same standardisations as other researches. This paper considers the current issues regarding the lack of standardisation in the methods, ethics, and ownership of 3D digital data with a focus on human remains research. The aim of this paper is to stimulate further research and discussion, allowing this field to develop, improving the quality and value of future research
