79 research outputs found

    How Wetland Plants Deal with Stress

    Get PDF
    We all get stressed. To deal with that stress, some of us may exercise, take a bubble bath, cry, or simply leave the stressful situation. But how can you cope with stress if you are rooted in place? Plants that live in estuaries are exposed to many types of stresses from the environment, including flooding, high salt levels, low soil oxygen, and waves. Fortunately, wetland plants have developed ways to survive within these conditions, from excreting salt, to growing faster, to even breaking down cell walls to maximize air flow. Plants can tolerate different levels of stress depending on their age and species. Knowing how plants react to stress is important for our understanding of nature and for managing important environments, like wetlands! This article explores how plant species in the San Francisco Estuary react to stress and how we can use knowledge about plant stress responses to protect wetlands

    Can Multi-Species Plantings Alleviate Abiotic Stressors to Enhance Bald Cypress Restoration

    Get PDF
    Restoration researchers and practitioners alike advocate for novel restoration approaches, informed by ecological theories and principles, to enhance the likelihood of meeting restoration goals. Forested wetland restoration has historically focused on creating abiotic conditions that support the tolerance thresholds of desired species, but the stress gradient hypothesis provides guidance for potential new strategies that use biotic interactions to ameliorate stressful abiotic conditions. In this study, we tested whether multi-species planting approaches can be used to enhance the survival and growth of a target restoration tree species, Bald cypress, along multiple abiotic gradients. We conducted a fully factorial controlled greenhouse experiment which manipulated above- and belowground interactions between two species (Bald cypress and Soft rush), as well as light availability and depth of inundation. Our findings showed that co-planting Bald cypress seedlings with Soft rush did not increase tree biomass production or growth metrics (e.g. stem height and leaf area) under any exposed stress combination. Importantly, we found that full-sun irradiance negatively impacted functional traits associated with the tree seedlings\u27 health and ability to photosynthesize. Our findings are important for consideration by practitioners as light is rarely the focus of wetland ecosystem restoration and degraded forested wetlands or restoration sites often have open canopies

    Effects of Climate Change on Seed Germination May Contribute to Habitat Homogenization in Freshwater Forested Wetlands

    Get PDF
    Climate changes in temperate regions are expected to result in warmer, shorter winters in temperate latitudes. These changes may have consequences for germination of plant species that require a period of physiological dormancy. The effect of cold duration on seed germination has been investigated in a number of plant taxa, but has not been well studied in wetland and bottomland forest tree species, an ecosystem that is threatened by habitat homogenization. Our work sought to test the role of changing winter temperatures on seed germination in specialist (Nyssa aquatica and Taxodium distichum) and generalist (Acer rubrum and Liquidambar styraciflua) tree species within forested wetlands throughout the eastern U.S. The experiment was conducted in an environmental chamber in Norfolk, VA, USA. Seeds of T. distichum, N. aquatica, A. rubrum, and L. styraciflua were exposed to each of seven pre-germination cold exposure durations (0, 15, 30, 45, 60, 75, and 90 days) and observed for germination for 30 days. Cold stratification duration positively impacted total percent germination in N. aquatica (p \u3c 0.0001) as well as A. rubrum (p = 0.0008) and T. distichum (p = 0.05). Liquidambar styraciflua seeds exhibited more rapid rates of germination with increasing cold exposure duration and greater percent germination compared to the others regardless of cold stratification duration. Our results provide insight into how community dynamics and biodiversity of wetland and bottomland trees may shift with a changing climate. Further, this work emphasizes the importance of understanding the role of plant functional traits in early life stages in community dynamics and has implications for management practices

    Influence of Abiotic Drivers on 1-Year Seedling Survival of Six Mangrove Species in Southeast Asia

    Get PDF
    Establishment and survival of plant species in systems with dominant environmental drivers (i.e. factors that exert disproportionate control over species establishment and survival) is often thought to be dominated by one master variable. In forested wetlands such as mangroves, hydrology is typically considered the dominant limiting driver. At the same time, light is a major driver of plant community dynamics, with some of the best understood plant life-history tradeoffs related to fast growth under high-light conditions versus survival under low-light conditions. Yet light is given relatively limited consideration in mangrove research compared to other drivers. Understanding the relative importance of abiotic drivers for seedling survival is crucial for effective management and restoration of mangrove ecosystems. Despite increasing global efforts to plant mangrove propagules at elevations appropriate for the hydrologic conditions needed at early life history stages, restoration efforts report low survival of planted propagules. Although many studies have made considerable progress to characterize the abiotic limitations of mangrove propagule establishment, fewer studies have addressed multiple abiotic drivers that limit the survival of the established seedling stage. We characterized the light and inundation conditions of more than 900 naturally established mangrove seedlings and monitored the survival of more than 2,800 seedlings (including 16 species) located on a species-rich island in tropical Southeast Asia for 1 year. Our findings suggest that light has a stronger effect than hydrology on survival following seedling establishment. We provide a conceptual visualization of shifts in the drivers of mangrove survival/loss throughout ontogeny

    Edge Effects Impact Blue Carbon Dynamics Across Coastal Ecotones in a Tropical Seascape

    Get PDF
    Coastal wetlands are important for their ability to regulate global climate through the sequestration and long-term storage of carbon. Accurate quantification of ecosystem-specific carbon dynamics (including sequestration, storage, and fluxes) is needed to develop accurate carbon budgets that inform climate change mitigation. Most work to quantify carbon dynamics either use subsampling in core habitats or benefit transfers to upscale values. While these approaches are valuable, our understanding of carbon dynamics across ecosystem transitions and overall heterogeneity remains a critical gap in coastal ecosystems as boundaries are not always clear. In this study, we established transects across both mangrove and seagrass ecotones into adjacent tidal flats in Singapore to quantifying vegetation cover, soil carbon storage, and CO2 fluxes. Vegetation cover in all transitions and soil carbon storage in most transitions followed a decreasing sigmoidal pattern from vegetated to unvegetated portions, but differed in rate and width. CO2 fluxes followed a peak distribution in mangrove–tidal flat transitions with maximum values occurring within the mangroves and were correlated with pneumatophore density, while seagrasses saw a linear increase in CO2 fluxes from the seagrass to tidal flat. Seascape analysis of soil carbon showed site-specific impacts that resulted in differences in carbon stocks (0%–8%) as well as the width of these transitions. This study highlights the importance of understanding ecotones to better account for edge effects, which can lead to the over or under estimation of carbon, and provides a needed step in increasing the accuracy of blue carbon assessments in these critical ecosystems

    Can Community Structure Track Sea-Level Rise? Stress and Competitive Controls in Tidal Wetlands

    Get PDF
    Climate change impacts, such as accelerated sea-level rise, will affect stress gradients, yet impacts on competition/stress tolerance trade-offs and shifts in distributions are unclear. Ecosystems with strong stress gradients, such as estuaries, allow for space-for-time substitutions of stress factors and can give insight into future climate-related shifts in both resource and nonresource stresses. We tested the stress gradient hypothesis and examined the effect of increased inundation stress and biotic interactions on growth and survival of two congeneric wetland sedges, Schoenoplectus acutus and Schoenoplectus americanus. We simulated sea-level rise across existing marsh elevations and those not currently found to reflect potential future sea-level rise conditions in two tidal wetlands differing in salinity. Plants were grown individually and together at five tidal elevations, the lowest simulating an 80-cm increase in sea level, and harvested to assess differences in biomass after one growing season. Inundation time, salinity, sulfides, and redox potential were measured concurrently. As predicted, increasing inundation reduced biomass of the species commonly found at higher marsh elevations, with little effect on the species found along channel margins. The presence of neighbors reduced total biomass of both species, particularly at the highest elevation; facilitation did not occur at any elevation. Contrary to predictions, we documented the competitive superiority of the stress tolerator under increased inundation, which was not predicted by the stress gradient hypothesis. Multifactor manipulation experiments addressing plant response to accelerated climate change are integral to creating a more realistic, valuable, and needed assessment of potential ecosystem response. Our results point to the important and unpredicted synergies between physical stressors, which are predicted to increase in intensity with climate change, and competitive forces on biomass as stresses increase

    Pharmacokinetics, Biotransformation, and Excretion of [14C]Etelcalcetide (AMG 416) Following a Single Microtracer Intravenous Dose in Patients with Chronic Kidney Disease on Hemodialysis

    Get PDF
    Etelcalcetide (AMG 416) is a novel synthetic peptide calcium-sensing receptor activator in clinical development as an intravenous calcimimetic for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease (CKD) on hemodialysis. Etelcalcetide is composed of seven d-aminoacids with an l-cysteine linked to a d-cysteine by a disulfide bond. A single intravenous dose of [(14)C]etelcalcetide (10 mg; 26.3 kBq; 710 nCi) was administered to patients with CKD on hemodialysis to elucidate the pharmacokinetics, biotransformation, and excretion of etelcalcetide in this setting. Blood, dialysate, urine, and feces were collected to characterize the pharmacokinetics, biotransformation product profiles, mass balance, and formation of anti-etelcalcetide antibodies. Accelerator mass spectrometry was necessary to measure the microtracer quantities of C-14 excreted in the large volumes of dialysate and other biomatrices. An estimated 67 % of the [(14)C]etelcalcetide dose was recovered in dialysate, urine, and feces 176 days after dose administration. Etelcalcetide was primarily cleared by hemodialysis, with approximately 60 % of the administered dose eliminated in dialysate. Minor excretion was observed in urine and feces. Biotransformation resulted from disulfide exchange with endogenous thiols, and preserved the etelcalcetide d-amino acid backbone. Drug-related radioactivity circulated primarily as serum albumin peptide conjugate (SAPC). Following removal of plasma etelcalcetide by hemodialysis, re-equilibration occurred between SAPC and l-cysteine present in blood to partially restore the etelcalcetide plasma concentrations between dialysis sessions. No unanticipated safety signals or anti-etelcalcetide or anti-SAPC antibodies were detected. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40262-016-0433-0) contains supplementary material, which is available to authorized users

    Blue Carbon Science, Management and Policy Across a Tropical Urban Landscape

    Get PDF
    The ability of vegetated coastal ecosystems to sequester high rates of “blue” carbon over millennial time scales has attracted the interest of national and international policy makers as a tool for climate change mitigation. Whereas focus on blue carbon conservation has been mostly on threatened rural seascapes, there is scope to consider blue carbon dynamics along highly fragmented and developed urban coastlines. The tropical city state of Singapore is used as a case study of urban blue carbon knowledge generation, how blue carbon changes over time with urban development, and how such knowledge can be integrated into urban planning alongside municipal and national climate change obligations. A systematic review of blue carbon studies in Singapore was used to support a qualitative review of Singapore’s blue carbon ecosystems, carbon budget, changes through time and urban planning and policy. Habitat loss across all blue carbon ecosystems is coarsely estimated to have resulted in the release of ∼12.6 million tonnes of carbon dioxide since the beginning of the 20th century. However, Singapore’s remaining blue carbon ecosystems still store an estimated 568,971 – 577,227 tonnes of carbon (equivalent to 2.1 million tonnes of carbon dioxide) nationally, with a small proportion of initial loss offset by habitat restoration. Carbon is now a key topic on the urban development and planning agenda, as well as nationally through Singapore’s contributions to the Paris Agreement. The experiences of Singapore show that coastal ecosystems and their blue carbon stocks can be successfully managed along an urban coastline, and can help inform blue carbon science and management along other rapidly urbanizing coastlines throughout the tropics

    Distribution of Dioecious Eastern Red Cedar (Juniperus virginiana) along an Environmental Gradient in Ogallala, NE.

    Get PDF
    Abstract The purpose of this research was to study the sex distribution and energy allocation of dioecious Eastern Red Cedars (Juniperus virginiana) along an environmental resource gradient. The trees surveyed were growing in a canyon located at the University of Nebraska’s Cedar Point Biological Research Station in Ogallala, Nebraska. Due to the geography of this canyon, environmental factors necessary for plant growth should vary depending on the tree’s location within the canyon. These factors include water availability, sun exposure, ground slope, and soil nitrogen content, all of which are necessary for carbon acquisition. Juniperus virginiana is a dioecious conifer. Dioecious plants maintain male and female reproductive structures on separate individuals. Therefore, proximal spatial location is essential for pollination and successful reproduction. Typically female reproductive structures are more costly and require a greater investment of carbon and nitrogen. For this reason, growth, survival and successful reproduction are more likely to be limited by environmental resources for females than for male individuals. If this is true for Juniperus virginiana, females should be located in more nutrient and water rich areas than males. This also assumes that females can not be reproductively successful in areas of poor environmental quality. Therefore, reproductive males should be more likely to inhabit environments with relatively lower resource availability than females. Whether the environment affects sexual determination or just limits survival of different sexes is still relatively unknown. In order to view distribution trends along the environmental gradient, the position of the tree in the canyon transect was compared to its sex. Any trend in sex should correspond with varying environmental factors in the canyon, ie: sunlight availability, aspect, and ground slope. The individuals’ allocation to growth and reproduction was quantified first by comparing trunk diameter at six inches above ground to sex and location of the tree. The feature of energy allocation was further substantiated by comparing carbon and nitrogen content in tree leaf tissue and soil to location and sex of each individual. Carbon and nitrogen in soil indicate essential nutrient availability to the individual, while C and N in leaf tissue indicate nutrient limitation experienced by the tree. At the conclusion of this experiment, there is modest support that survival and fecundity of females demands environments relatively richer in nutrients, than needed by males to survive and be reproductively active. Side of the canyon appeared to have an influence on diameter of trees, frequency of sex and carbon and nitrogen leaf content. While this information indicated possible trends in the relation of sex to nutrient availability, most of the environmental variables presumed responsible for the sex distribution bias differed minutely and may not have been biologically significant to tree growth
    corecore