3,015 research outputs found

    Direct Detection of Light Dark Matter and Solar Neutrinos via Color Center Production in Crystals

    Full text link
    We propose a new low-threshold direct-detection concept for dark matter and for coherent nuclear scattering of solar neutrinos, based on the dissociation of atoms and subsequent creation of color center type defects within a lattice. The novelty in our approach lies in its ability to detect single defects in a macroscopic bulk of material. This class of experiments features ultra-low energy thresholds which allows for the probing of dark matter as light as O(10)\mathcal{O}(10) MeV through nuclear scattering. Another feature of defect creation in crystals is directional information, which presents as a spectacular signal and a handle on background reduction in the form of daily modulation of the interaction rate. We discuss the envisioned setup and detection technique, as well as background reduction. We further calculate the expected rates for dark matter and solar neutrinos in two example crystals for which available data exists, demonstrating the prospective sensitivity of such experiments

    Searching for Displaced Higgs Decays

    Full text link
    We study a simplified model of the SM Higgs boson decaying to a degenerate pair of scalars which travel a macroscopic distance before decaying to SM particles. This is the leading signal for many well-motivated solutions to the hierarchy problem that do not propose additional light colored particles. Bounds for displaced Higgs decays below 1010 cm are found by recasting existing tracker searches from Run I. New tracker search strategies, sensitive to the characteristics of these models and similar decays, are proposed with sensitivities projected for Run II at s=13\sqrt{s} = 13 TeV. With 20 fb1^{-1} of data, we find that Higgs branching ratios down to 7×1047 \times 10^{-4} can be probed for centimeter decay lengths.Comment: 10 pages, 12 figures, v3: displaced jet trigger correcte

    Phenomenology of a Long-Lived LSP with R-Parity Violation

    Full text link
    We present the leading experimental constraints on supersymmetric models with R-parity violation (RPV) and a long-lived lightest superpartner (LSP). We consider both the well-motivated dynamical RPV scenario as well as the conventional holomorphic RPV operators. Guided by naturalness, we study the cases of stop, gluino, and higgsino LSPs with several possible leading decay channels in each case. The CMS displaced dijet and the ATLAS multitrack displaced vertex searches have been fully recast, with all cuts and vertex reconstruction algorithms applied. Heavy charged stable particle searches by CMS are also applied. In addition, we consider representative bounds for prompt LSP decays that are directly applicable. Our main results are exclusion plots in the mLSPτLSPm_{\rm LSP}-\tau_{\rm LSP} plane for the various scenarios. We find that the natural parameter space (mt~<800m_{\tilde{t}} <800 GeV, mg~<1500m_{\tilde{g}}<1500 GeV, mH~<800m_{\tilde{H}}<800 GeV) is excluded for a long-lived LSP (τLSP1\tau_{\rm LSP} \gtrsim 1 mm).Comment: 25 pages, 8 figure

    Models of Dynamical R-Parity Violation

    Full text link
    The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called flavor mediation scenario, allows for the mediation of supersymmetry breaking, R-parity breaking, and flavor symmetry breaking in a unified manner.Comment: v2: references adde

    Accretion of Dissipative Dark Matter onto Active Galactic Nuclei

    Full text link
    We examine the possibility that accretion of Dissipative Dark Matter (DDM) onto Active Galactic Nuclei (AGN) contributes to the growth rate of Super Massive Black Holes (SMBHs). Such a scenario could alleviate tension associated with anomalously large SMBHs measured at very early cosmic times, as well as observations that indicate that the growth of the most massive SMBHs occurs before z6z\sim6, with little growth at later times. These observations are not readily explained within standard AGN theory. We find a range in the parameter space of DDM models where we both expect efficient accretion to occur and which is consistent with observations of a large sample of measured SMBHs. When DDM accretion is included, the predicted evolution of this sample seems to be more consistent with assumptions regarding maximal BH seed masses and maximal AGN luminosities.Comment: Typos and affiliations correcte

    Study to define unsteady flow fields and their statistical characteristics

    Get PDF
    Preliminary estimates of space shuttle fluctuating pressure environments were made based on analyses of wind tunnel data, and empirical prediction techniques. Particular emphasis was given to the external tank and solid rocket boosters for the transonic speed regime during launch of a parallel-burn space shuttle configuration. Predicted environments are presented as space-averaged zonal profiles with progressive shading from zone to zone to illustrate spatial variations in the magnitude of the fluctuating pressure coefficient over the surfaces of the external tank and solid rocket boosters. Predictions are provided for the transonic Mach number range from 0.8 equal to or less than M sub infinity equal to or less than 1.5, and for supersonic Mach numbers of 2.0 and 3.0
    corecore