508 research outputs found

    de Sitter limit of inflation and nonlinear perturbation theory

    Full text link
    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gauge, and show that it vanishes sufficiently fast in the de Sitter limit. By studying the de Sitter limit, we then extrapolate to the n'th order action of the comoving curvature perturbation and discuss the slow-roll order of the n-point correlation function.Comment: 14 pages, 1 figure; typos corrected and discussion of tensor modes adde

    South Africa, the arts and youth in conflict with the law

    Get PDF
    This paper describes the DIME (Diversion into Music Education) youth intervention program that originated in South Africa in 2001. DIME offers instruction in African marimba and djembe bands to juvenile offenders. Conceived as a community collaboration among organizations in the cities of Cape Town, SA and Tampa, USA (including the University of the Western Cape and the University of South Florida), DIME offers a unique example of community music and multicultural music education.Web of Scienc

    The financial crisis and the systemic failure of academic economics

    Get PDF
    The economics profession appears to have been unaware of the long build-up to the current worldwide financial crisis and to have significantly underestimated its dimensions once it started to unfold. In our view, this lack of understanding is due to a misallocation of research efforts in economics. We trace the deeper roots of this failure to the profession's insistence on constructing models that, by design, disregard the key elements driving outcomes in real-world markets. The economics profession has failed in communicating the limitations, weaknesses, and even dangers of its preferred models to the public. This state of affairs makes clear the need for a major reorientation of focus in the research economists undertake, as well as for the establishment of an ethical code that would ask economists to understand and communicate the limitations and potential misuses of their models

    Enhancing the tensor-to-scalar ratio in simple inflation

    Full text link
    We show that in theories with a nontrivial kinetic term the contribution of the gravitational waves to the CMB fluctuations can be substantially larger than that is naively expected in simple inflationary models. This increase of the tensor-to-scalar perturbation ratio leads to a larger B-component of the CMB polarization, thus making the prospects for future detection much more promising. The other important consequence of the considered model is a higher energy scale of inflation and hence higher reheating temperature compared to a simple inflation.Comment: 9 pages, 1 figure and references are added, discussion is slightly extended, published versio

    A new diagrammatic representation for correlation functions in the in-in formalism

    Get PDF
    In this paper we provide an alternative method to compute correlation functions in the in-in formalism, with a modified set of Feynman rules to compute loop corrections. The diagrammatic expansion is based on an iterative solution of the equation of motion for the quantum operators with only retarded propagators, which makes each diagram intrinsically local (whereas in the standard case locality is the result of several cancellations) and endowed with a straightforward physical interpretation. While the final result is strictly equivalent, as a bonus the formulation presented here also contains less graphs than other diagrammatic approaches to in-in correlation functions. Our method is particularly suitable for applications to cosmology.Comment: 14 pages, matches the published version. includes a modified version of axodraw.sty that works with the Revtex4 clas

    On the divergences of inflationary superhorizon perturbations

    Full text link
    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that within the stochastic framework they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the ΔN\Delta N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would of course be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization group invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.Comment: 12 page

    Low-scale Quintessential Inflation

    Get PDF
    In quintessential inflationary model, the same master field that drives inflation becomes, later on, the dynamical source of the (present) accelerated expansion. Quintessential inflationary models require a curvature scale at the end of inflation around 106MP10^{-6}M_{\rm P} in order to explain the large scale fluctuations observed in the microwave sky. If the curvature scale at the end of inflation is much smaller than 106MP10^{-6}M_{\rm P}, the large scale adiabatic mode may be produced thanks to the relaxation of a scalar degree of freedom, which will be generically denoted, according to the recent terminology, as the curvaton field. The production of the adiabatic mode is analysed in detail in the case of the minimal quintessential inflationary model originally proposed by Peebles and Vilenkin.Comment: 25 pages; 5 figure

    Holographic bounds on the UV cutoff scale in inflationary cosmology

    Full text link
    We discuss how holographic bounds can be applied to the quantum fluctuations of the inflaton. In general the holographic principle will lead to a bound on the UV cutoff scale of the effective theory of inflation, but it will depend on the coarse-graining prescription involved in calculating the entropy. We propose that the entanglement entropy is a natural measure of the entropy of the quantum perturbations, and show which kind of bound on the cutoff it leads to. Such bounds are related to whether the effects of new physics will show up in the CMB.Comment: 19 pages, 2 figures;(V3):Comments and references adde

    Infrared effects in inflationary correlation functions

    Full text link
    In this article, I briefly review the status of infrared effects which occur when using inflationary models to calculate initial conditions for a subsequent hot, dense plasma phase. Three types of divergence have been identified in the literature: secular, "time-dependent" logarithms, which grow with time spent outside the horizon; "box-cutoff" logarithms, which encode a dependence on the infrared cutoff when calculating in a finite-sized box; and "quantum" logarithms, which depend on the ratio of a scale characterizing new physics to the scale of whatever process is under consideration, and whose interpretation is the same as conventional field theory. I review the calculations in which these divergences appear, and discuss the methods which have been developed to deal with them.Comment: Invited review for focus section of Classical & Quantum Gravity on nonlinear and nongaussian perturbation theory. Some improvements compared to version which will appear in CQG, especially in Sec. 2.3. 30 pages + references

    Enhanced Non-Gaussianity from Excited Initial States

    Full text link
    We use the techniques of effective field theory in an expanding universe to examine the effect of choosing an excited inflationary initial state built over the Bunch-Davies state on the CMB bi-spectrum. We find that even for Hadamard states, there are unexpected enhancements in the bi-spectrum for certain configurations in momentum space due to interactions of modes in the early stages of inflation. These enhancements can be parametrically larger than the standard ones and are potentially observable in current and future data. These initial state effects have a characteristic signature in ll-space which distinguishes them from the usual contributions, with the enhancement being most pronounced for configurations corresponding to flattened triangles for which two momenta are collinear.Comment: 33 pages, 1 figure. Refs added and minor addition
    corecore