439 research outputs found
Lanthanopolyoxotungstates in silica nanoparticles: multi-wavelength photoluminescent core/shell materials
We thank Dr Marc Willinger and the RNME (National Electronic Microscopy Network, Portugal) for HRTEM images. Electronic supplementary information (ESI) available: FT-IR and FT-Raman spectra, additional HRTEM images and complementary photoluminescence spectra details, see DOI: 10.1039/b919691a.Photoluminescent lanthanopolyoxotungstate core/shell nanoparticles are prepared by the encapsulation of lanthanide-containing polyoxometalates (POMs) with amorphous silica shells. The preparation of morphological well-defined core/shell nanoparticles is achieved by the hydrolysis of tetraethoxysilane in the presence of POMs using a reverse microemulsion method. The POMs used are decatungstolanthanoates of [Ln(W(5)O(18))(2)](9-) type (Ln(III) = Eu, Gd and Tb). Photoluminescence studies show that there is efficient emission from the POM located inside the SiO(2) shells, through excitation paths that involve O --> Eu/Tb and O --> W ligand-to-metal charge transfer. It is also shown that the excitation of the POM containing europium(III) may be tuned towards longer wavelengths via an antenna effect, by coordination of an organic ligand such as 3-hydroxypicolinate. The POM/SiO(2) nanoparticles form stable suspensions in aqueous solution having the advantage of POM stabilization inside the core and the possibility of further surface grafting of chemical moieties via well known derivatization procedures for silica surfaces. These features together with the possibility of tuning the excitation wavelength by modifying the coordination sphere in the lanthanopolyoxometalate, make this strategy promising to develop a new class of optical bio-tags composed of silica nanobeads with multi-wavelength photoluminescent lanthanopolyoxometalate cores.FCT- POCI/QUI/58887/2004FCT- PTDC/ QUI/67712/2006FCT- SFRH/BD/30137/2006FCT- SFRH/BPD/14954/200
Isolation of a wide range of minerals from a thermally treated plant: Equisetum arvense, a Mare’s tale
Silica is the second most abundant biomineral being exceeded in nature only by biogenic CaCO3. Many land plants (such as rice, cereals, cucumber, etc.) deposit silica in significant amounts to reinforce their tissues and as a systematic response to pathogen attack. One of the most ancient species of living vascular plants, Equisetum arvense is also able to take up and accumulate silica in all parts of the plant. Numerous methods have been developed for elimination of the organic material and/or metal ions present in plant material to isolate biogenic silica. However, depending on the chemical and/or physical treatment applied to branch or stem from Equisetum arvense; other mineral forms such glass-type materials (i.e. CaSiO3), salts (i.e. KCl) or luminescent materials can also be isolated from the plant material. In the current contribution, we show the chemical and/or thermal routes that lead to the formation of a number of different mineral types in addition to biogenic silica
Nanoscale Confinement and Fluorescence Effects of Bacterial Light Harvesting Complex LH2 in Mesoporous Silicas
Many key chemical and biochemical reactions, particularly in living cells, take place in confined space at the mesoscopic scale. Toward understanding of physicochemical nature of biomacromolecules confined in nanoscale space, in this work we have elucidated fluorescence effects of a light harvesting complex LH2 in nanoscale chemical environments. Mesoporous silicas (SBA-15 family) with different shapes and pore sizes were synthesized and used to create nanoscale biomimetic environments for molecular confinement of LH2. A combination of UV-vis absorption, wide-field fluorescence microscopy, and in situ ellipsometry supports that the LH2 complexes are located inside the silica nanopores. Systematic fluorescence effects were observed and depend on degree of space confinement. In particular, the temperature dependence of the steady-state fluorescence spectra was analyzed in detail using condensed matter band shape theories. Systematic electronic-vibrational coupling differences in the LH2 transitions between the free and confined states are found, most likely responsible for the fluorescence effects experimentally observed
Sequence Defined Disulfide-Linked Shuttle for Strongly Enhanced Intracellular Protein Delivery
Intracellular protein transduction technology is opening the door for a promising alternative to gene therapy. Techniques have to address all critical steps, like efficient cell uptake, endolysosomal escape, low toxicity, while maintaining full functional activity of the delivered protein. Here, we present the use of a chemically precise, structure defined three-arm cationic oligomer carrier molecule for protein delivery. This carrier of exact and low molecular weight combines good cellular uptake with efficient endosomal escape and low toxicity. The protein cargo is covalently attached by a bioreversible disulfide linkage. Murine 3T3 fibroblasts could be transduced very efficiently with cargo nlsEGFP, which was tagged with a nuclear localization signal. We could show subcellular delivery of the nlsEGFP to the nucleus, confirming cytosolic delivery and expected subsequent subcellular trafficking. Transfection efficiency was concentration-dependent in a directly linear mode and 20-fold higher in comparison with HIV-TAT-nlsEGFP containing a functional TAT transduction domain. Furthermore, β-galactosidase as a model enzyme cargo, modified with the carrier oligomer, was transduced into neuroblastoma cells in enzymatically active form
Interaction of Mesoporous Silica Nanoparticles with Human Red Blood Cell Membranes: Size and Surface Effects
The interactions of mesoporous silica nanoparticles (MSNs) of different particle sizes and surface properties with human red blood cell (RBC) membranes were investigated by membrane filtration, flow cytometry, and various microscopic techniques. Small MCM-41-type MSNs (∼100 nm) were found to adsorb to the surface of RBCs without disturbing the membrane or morphology. In contrast, adsorption of large SBA-15-type MSNs (∼600 nm) to RBCs induced a strong local membrane deformation leading to spiculation of RBCs, internalization of the particles, and eventual hemolysis. In addition, the relationship between the degree of MSN surface functionalization and the degree of its interaction with RBC, as well as the effect of RBC−MSN interaction on cellular deformability, were investigated. The results presented here provide a better understanding of the mechanisms of RBC−MSN interaction and the hemolytic activity of MSNs and will assist in the rational design of hemocompatible MSNs for intravenous drug delivery and in vivo imaging
Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP
- …
