1,057 research outputs found

    Progress In The Ags Upgrade Projects

    Get PDF

    Strongly nonlinear dynamics of electrolytes in large ac voltages

    Get PDF
    We study the response of a model micro-electrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two novel features - significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasi-equilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination", since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.Comment: 30 pages, 17 eps-figures, RevTe

    Nonlinear electrochemical relaxation around conductors

    Full text link
    We analyze the simplest problem of electrochemical relaxation in more than one dimension - the response of an uncharged, ideally polarizable metallic sphere (or cylinder) in a symmetric, binary electrolyte to a uniform electric field. In order to go beyond the circuit approximation for thin double layers, our analysis is based on the Poisson-Nernst-Planck (PNP) equations of dilute solution theory. Unlike most previous studies, however, we focus on the nonlinear regime, where the applied voltage across the conductor is larger than the thermal voltage. In such strong electric fields, the classical model predicts that the double layer adsorbs enough ions to produce bulk concentration gradients and surface conduction. Our analysis begins with a general derivation of surface conservation laws in the thin double-layer limit, which provide effective boundary conditions on the quasi-neutral bulk. We solve the resulting nonlinear partial differential equations numerically for strong fields and also perform a time-dependent asymptotic analysis for weaker fields, where bulk diffusion and surface conduction arise as first-order corrections. We also derive various dimensionless parameters comparing surface to bulk transport processes, which generalize the Bikerman-Dukhin number. Our results have basic relevance for double-layer charging dynamics and nonlinear electrokinetics in the ubiquitous PNP approximation.Comment: 25 pages, 17 figures, 4 table

    Diffuse-Charge Dynamics in Electrochemical Systems

    Full text link
    The response of a model micro-electrochemical system to a time-dependent applied voltage is analyzed. The article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics. The model problem consists of a symmetric binary electrolyte between parallel-plate, blocking electrodes which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and numerical solutions are obtained for large voltages. The ``weakly nonlinear'' limit of thin double layers is then analyzed by matched asymptotic expansions in the small parameter ϵ=λD/L\epsilon = \lambda_D/L, where λD\lambda_D is the screening length and LL the electrode separation. At leading order, the system initially behaves like an RC circuit with a response time of λDL/D\lambda_D L / D (not λD2/D\lambda_D^2/D), where DD is the ionic diffusivity, but nonlinearity violates this common picture and introduce multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse part of the double layer couples to bulk diffusion at the time scale, L2/DL^2/D. In the ``strongly nonlinear'' regime (controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concentration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of more general situations involving surface conduction, multi-component electrolytes, and Faradaic processes.Comment: 10 figs, 26 pages (double-column), 141 reference

    Het nieuwe vermogensrecht en het gezondheidsrecht

    Get PDF
    corecore