117 research outputs found
Rotation Measure Synthesis of Galactic Polarized Emission with the DRAO 26-m Telescope
Radio polarimetry at decimetre wavelengths is the principal source of
information on the Galactic magnetic field. The diffuse polarized emission is
strongly influenced by Faraday rotation in the magneto-ionic medium and
rotation measure is the prime quantity of interest, implying that all Stokes
parameters must be measured over wide frequency bands with many frequency
channels. The DRAO 26-m Telescope has been equipped with a wideband feed, a
polarization transducer to deliver both hands of circular polarization, and a
receiver, all operating from 1277 to 1762 MHz. Half-power beamwidth is between
40 and 30 arcminutes. A digital FPGA spectrometer, based on commercially
available components, produces all Stokes parameters in 2048 frequency channels
over a 485-MHz bandwidth. Signals are digitized to 8 bits and a Fast Fourier
Transform is applied to each data stream. Stokes parameters are then generated
in each frequency channel. This instrument is in use at DRAO for a Northern sky
polarization survey. Observations consist of scans up and down the Meridian at
a drive rate of 0.9 degree per minute to give complete coverage of the sky
between declinations -30 degree and 90 degree. This paper presents a complete
description of the receiver and data acquisition system. Only a small fraction
of the frequency band of operation is allocated for radio astronomy, and about
20 percent of the data are lost to interference. The first 8 percent of data
from the survey are used for a proof-of-concept study, which has led to the
first application of Rotation Measure Synthesis to the diffuse Galactic
emission obtained with a single-antenna telescope. We find rotation measure
values for the diffuse emission as high as approximately 100 rad per square
metre, much higher than recorded in earlier work.Comment: Accepted for publication in The Astronomical Journa
Calibrating CHIME, A New Radio Interferometer to Probe Dark Energy
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit
interferometer currently being built at the Dominion Radio Astrophysical
Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral
hydrogen in the frequency range 400 -- 800\,MHz over half of the sky, producing
a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 --
2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that
will yield constraints on the BAO power spectrum and provide a test-bed for our
calibration scheme. I will discuss the CHIME calibration requirements and
describe instrumentation we are developing to meet these requirements
Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder
A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping
Experiment) is currently being commissioned at the Dominion Radio Astrophysical
Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical
interferometer designed to measure the large scale neutral hydrogen power
spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used
to measure the baryon acoustic oscillation (BAO) scale across this poorly
probed redshift range where dark energy becomes a significant contributor to
the evolution of the Universe. The instrument revives the cylinder design in
radio astronomy with a wide field survey as a primary goal. Modern low-noise
amplifiers and digital processing remove the necessity for the analog
beamforming that characterized previous designs. The Pathfinder consists of two
cylinders 37\,m long by 20\,m wide oriented north-south for a total collecting
area of 1,500 square meters. The cylinders are stationary with no moving parts,
and form a transit instrument with an instantaneous field of view of
100\,degrees by 1-2\,degrees. Each CHIME Pathfinder cylinder has a
feedline with 64 dual polarization feeds placed every 30\,cm which
Nyquist sample the north-south sky over much of the frequency band. The signals
from each dual-polarization feed are independently amplified, filtered to
400-800\,MHz, and directly sampled at 800\,MSps using 8 bits. The correlator is
an FX design, where the Fourier transform channelization is performed in FPGAs,
which are interfaced to a set of GPUs that compute the correlation matrix. The
CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed
to detect the BAO feature and constrain the distance-redshift relation.Comment: 20 pages, 12 figures. submitted to Proc. SPIE, Astronomical
Telescopes + Instrumentation (2014
Water Management of Noninsulating and Insulating Sheathings: Final Report
There is an increasing market in liquid (or fluid) applied water management barriers for residential applications that could be used in place of tapes and other self-adhering membranes if applied correctly, especially around penetrations in the enclosure. This report discusses current best practices, recommends ways in which the best practices can be improved, and looks at some current laboratory testing and testing standards
Hygric Redistribution in Insulated Assemblies: Retrofitting Residential Envelopes Without Creating Moisture Issues
The Building America program has recognized that most of the current housing stock is in need of energy related retrofits. One of the best ways of reducing the space conditioning energy consumption is to improve the thermal performance of the enclosure by adding exterior board foam insulation. This report quantifies the amount of water that can become trapped in the drainage cavity of typical wall systems, and measures the effect of water trapped in the drainage cavity on the moisture content of the sheathing. This study also attempts to explain the discrepancy between hygrothermal simulations and field performance of low permeance, low R-value exterior insulation (e.g. 3/4-in. foil faced polyisocyanurate) in cold climates
Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing
Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. The incidents related to rainwater leakage and condensation concerns. Condensation concerns have been extensively studied by others and are not further discussed in this report. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate
Characterization of the John A. Galt telescope for radio holography with CHIME
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the
21 cm emission of astrophysical neutral hydrogen to probe large scale structure
at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath
substantially brighter foregrounds remains a key challenge. Due to the high
dynamic range between 21 cm and foreground emission, an exquisite calibration
of instrument systematics, notably the telescope beam, is required to
successfully filter out the foregrounds. One technique being used to achieve a
high fidelity measurement of the CHIME beam is radio holography, wherein
signals from each of CHIME's analog inputs are correlated with the signal from
a co-located reference antenna, the 26 m John A. Galt telescope, as the 26 m
Galt telescope tracks a bright point source transiting over CHIME. In this work
we present an analysis of several of the Galt telescope's properties. We employ
driftscan measurements of several bright sources, along with background
estimates derived from the 408 MHz Haslam map, to estimate the Galt system
temperature. To determine the Galt telescope's beam shape, we perform and
analyze a raster scan of the bright radio source Cassiopeia A. Finally, we use
early holographic measurements to measure the Galt telescope's geometry with
respect to CHIME for the holographic analysis of the CHIME and Galt
interferometric data set
Periodic activity from a fast radio burst source
Fast radio bursts (FRBs) are bright, millisecond-duration radio transients
originating from extragalactic distances. Their origin is unknown. Some FRB
sources emit repeat bursts, ruling out cataclysmic origins for those events.
Despite searches for periodicity in repeat burst arrival times on time scales
from milliseconds to many days, these bursts have hitherto been observed to
appear sporadically, and though clustered, without a regular pattern. Here we
report the detection of a day periodicity (or possibly a
higher-frequency alias of that periodicity) from a repeating FRB
180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment
Fast Radio Burst Project (CHIME/FRB). In 38 bursts recorded from September
16th, 2018 through February 4th, 2020, we find that all bursts arrive in a
5-day phase window, and 50% of the bursts arrive in a 0.6-day phase window. Our
results suggest a mechanism for periodic modulation either of the burst
emission itself, or through external amplification or absorption, and disfavour
models invoking purely sporadic processes
- …
