559 research outputs found

    Decision time, slow inhibition, and theta rhythm

    Get PDF
    In this paper, we examine decision making in a spiking neuronal network and show that longer time constants for the inhibitory neurons can decrease the reaction times and produce theta rhythm.We analyze the mechanism and find that the spontaneous firing rate before the decision cues are applied can drift, and thereby influence the speed of the reaction time when the decision cues are applied. The drift of the firing rate in the population that will win the competition is larger if the time constant of the inhibitory interneurons is increased from 10 to 33 ms, and even larger if there are two populations of inhibitory neurons with time constants of 10 and 100 ms. Of considerable interest is that the decision that will be made can be influenced by the noise-influenced drift of the spontaneous firing rate over many seconds before the decision cues are applied. The theta rhythm associated with the longer time constant networks mirrors the greater integration in the firing rate drift produced by the recurrent connections over long time periods in the networks with slow inhibition. The mechanism for the effect of slow waves in the theta and delta range on decision times is suggested to be increased neuronal spiking produced by depolarization of the membrane potential on the positive part of the slow waves when the neuron’s membrane potential is close to the firing threshold

    Analog readout for optical reservoir computers

    Full text link
    Reservoir computing is a new, powerful and flexible machine learning technique that is easily implemented in hardware. Recently, by using a time-multiplexed architecture, hardware reservoir computers have reached performance comparable to digital implementations. Operating speeds allowing for real time information operation have been reached using optoelectronic systems. At present the main performance bottleneck is the readout layer which uses slow, digital postprocessing. We have designed an analog readout suitable for time-multiplexed optoelectronic reservoir computers, capable of working in real time. The readout has been built and tested experimentally on a standard benchmark task. Its performance is better than non-reservoir methods, with ample room for further improvement. The present work thereby overcomes one of the major limitations for the future development of hardware reservoir computers.Comment: to appear in NIPS 201

    High performance photonic reservoir computer based on a coherently driven passive cavity

    Full text link
    Reservoir computing is a recent bio-inspired approach for processing time-dependent signals. It has enabled a breakthrough in analog information processing, with several experiments, both electronic and optical, demonstrating state-of-the-art performances for hard tasks such as speech recognition, time series prediction and nonlinear channel equalization. A proof-of-principle experiment using a linear optical circuit on a photonic chip to process digital signals was recently reported. Here we present a photonic implementation of a reservoir computer based on a coherently driven passive fiber cavity processing analog signals. Our experiment has error rate as low or lower than previous experiments on a wide variety of tasks, and also has lower power consumption. Furthermore, the analytical model describing our experiment is also of interest, as it constitutes a very simple high performance reservoir computer algorithm. The present experiment, given its good performances, low energy consumption and conceptual simplicity, confirms the great potential of photonic reservoir computing for information processing applications ranging from artificial intelligence to telecommunicationsComment: non
    corecore