617 research outputs found

    Classification and Recovery of Radio Signals from Cosmic Ray Induced Air Showers with Deep Learning

    Full text link
    Radio emission from air showers enables measurements of cosmic particle kinematics and identity. The radio signals are detected in broadband Megahertz antennas among continuous background noise. We present two deep learning concepts and their performance when applied to simulated data. The first network classifies time traces as signal or background. We achieve a true positive rate of about 90% for signal-to-noise ratios larger than three with a false positive rate below 0.2%. The other network is used to clean the time trace from background and to recover the radio time trace originating from an air shower. Here we achieve a resolution in the energy contained in the trace of about 20% without a bias for 80%80\% of the traces with a signal. The obtained frequency spectrum is cleaned from signals of radio frequency interference and shows the expected shape.Comment: 20 pages, 13 figures, resubmitted to JINS

    First results of the CROME experiment

    Full text link
    It is expected that a radio signal in the microwave range is produced in the atmosphere due to molecular bremsstrahlung initiated by extensive air showers. The CROME (Cosmic-Ray Observation via Microwave Emission) experiment was built to search for this microwave signal. Radiation from the atmosphere is monitored in the extended C band (3.4--4.2 GHz) in coincidence with showers detected by the KASCADE-Grande experiment. The detector setup consists of several parabolic antennas and fast read-out electronics. The sensitivity of the detector has been measured with different methods. First results after half a year of data taking are presented.Comment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Electrical and optical impulse response of High Speed Micro-OLEDs under ultra-short pulse excitation

    Get PDF
    International audienceThe electric and optical impulse response of two types of high-speed OLED (HSOLED) driven by ultrashort electrical pulses is investigated. The two HSOLED were designed and manufactured to be characterized in the presence of electrical pulses ranging from 10 to 100 ns in duration and a repetition rate of 10 Hz. The impact of the OLED geometry and the fabrication process on the time response is investigated. This is the first time that an optimized HSOLED exhibits an electrical time response as low as 2.1 ± 0.6 ns and also shorter than the device optical decay time (9.8 ± 0.2 ns). Moreover, the HSOLED measured current density reaches 3.0 kA/cm 2 , the highest value reported in the literature, with state-of-the-art electroluminescence of 12 W/cm

    How MicroRNA and Transcription Factor Co-regulatory Networks Affect Osteosarcoma Cell Proliferation

    Full text link
    Osteosarcomas (OS) are complex bone tumors with various genomic alterations. These alterations affect the expression and function of several genes due to drastic changes in the underlying gene regulatory network. However, we know little about critical gene regulators and their functional consequences on the pathogenesis of OS. Therefore, we aimed to determine microRNA and transcription factor (TF) co-regulatory networks in OS cell proliferation. Cell proliferation is an essential part in the pathogenesis of OS and deeper understanding of its regulation might help to identify potential therapeutic targets. Based on expression data of OS cell lines divided according to their proliferative activity, we obtained 12 proliferation-related microRNAs and corresponding target genes. Therewith, microRNA and TF co-regulatory networks were generated and analyzed regarding their structure and functional influence. We identified key co-regulators comprising the microRNAs miR-9-5p, miR-138, and miR-214 and the TFs SP1 and MYC in the derived networks. These regulators are implicated in NFKB- and RB1-signaling and focal adhesion processes based on their common or interacting target genes (e.g., CDK6, CTNNB1, E2F4, HES1, ITGA6, NFKB1, NOTCH1, and SIN3A). Thus, we proposed a model of OS cell proliferation which is primarily co-regulated through the interactions of the mentioned microRNA and TF combinations. This study illustrates the benefit of systems biological approaches in the analysis of complex diseases. We integrated experimental data with publicly available information to unravel the coordinated (post)-transcriptional control of microRNAs and TFs to identify potential therapeutic targets in OS. The resulting microRNA and TF co-regulatory networks are publicly available for further exploration to generate or evaluate own hypotheses of the pathogenesis of OS (http://www.complex-systems.uni-muenster.​de/co_networks.html)

    Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation

    Full text link
    Osteosarcoma (OS) is the most common primary bone cancer exhibiting high genomic instability. This genomic instability affects multiple genes and microRNAs to a varying extent depending on patient and tumor subtype. Massive research is ongoing to identify genes including their gene products and microRNAs that correlate with disease progression and might be used as biomarkers for OS. However, the genomic complexity hampers the identification of reliable biomarkers. Up to now, clinico-pathological factors are the key determinants to guide prognosis and therapeutic treatments. Each day, new studies about OS are published and complicate the acquisition of information to support biomarker discovery and therapeutic improvements. Thus, it is necessary to provide a structured and annotated view on the current OS knowledge that is quick and easily accessible to researchers of the field. Therefore, we developed a publicly available database and Web interface that serves as resource for OS-associated genes and microRNAs. Genes and microRNAs were collected using an automated dictionary-based gene recognition procedure followed by manual review and annotation by experts of the field. In total, 911 genes and 81 microRNAs related to 1331 PubMed abstracts were collected (last update: 29 October 2013). Users can evaluate genes and microRNAs according to their potential prognostic and therapeutic impact, the experimental procedures, the sample types, the biological contexts and microRNA target gene interactions. Additionally, a pathway enrichment analysis of the collected genes highlights different aspects of OS progression. OS requires pathways commonly deregulated in cancer but also features OS-specific alterations like deregulated osteoclast differentiation. To our knowledge, this is the first effort of an OS database containing manual reviewed and annotated up-to-date OS knowledge. It might be a useful resource especially for the bone tumor research community, as specific information about genes or microRNAs is quick and easily accessible. Hence, this platform can support the ongoing OS research and biomarker discovery

    Electrical and optical impulse response of High Speed Micro-OLEDs under ultra-short pulse excitation

    Get PDF
    The electric and optical impulse response of two types of High Speed OLED (HSOLED) driven by ultra-short electrical pulses is investigated. The two HSOLED were designed and manufactured to be characterized in the presence of electrical pulses ranging from 10ns to 100ns in duration and a repetition rate of 10Hz. The impact of the OLED geometry and the fabrication process on the time response is investigated. This is the first time that an optimized HSOLED exhibits an electrical time response as low as 2.1±0.6 ns and also shorter than the device optical decay time (9.8±0.2ns). Moreover, the HSOLED measured current density reaches 3.0 kA/cm2, the highest value reported in the literature, with state-of-the-art electroluminescence of 12W/cm2
    corecore