1,072 research outputs found

    Pichia pastoris Fep1 is a [2Fe-2S] protein with a Zn finger that displays an unusual oxygen-dependent role in cluster binding

    Get PDF
    Fep1, the iron-responsive GATA factor from the methylotrophic yeast Pichia pastoris, has been characterised both in vivo and in vitro. This protein has two Cys(2)-Cys(2) type zinc fingers and a set of four conserved cysteines arranged in a Cys-X-5-Cys-X-8-Cys-X-2-Cys motif located between the two zinc fingers. Electronic absorption and resonance Raman spectroscopic analyses in anaerobic and aerobic conditions indicate that Fep1 binds iron in the form of a [2Fe-2S] cluster. Site-directed mutagenesis shows that replacement of the four cysteines with serine inactivates this transcriptional repressor. Unexpectedly, the inactive mutant is still able to bind a [2Fe-2S] cluster, employing two cysteine residues belonging to the first zinc finger. These two cysteine residues can act as alternative cluster ligands selectively in aerobically purified Fep1 wild type, suggesting that oxygen could play a role in Fep1 function by causing differential localization of the [Fe-S] cluster

    A rapid spectroscopic method to detect the fraudulent treatment of tuna fish with carbon monoxide

    Get PDF
    Carbon monoxide (CO) can be used to treat fresh meat and fish in order to retain its 'fresh' red colour appearance for a longer period of time. In fact, upon aging, myoglobin is oxidized to met-myoglobin with the concomitant blue-shift and broadening of the Soret maximum, which brings about a change in the colour of the fish, revealing that it is no longer fresh. The use of carbon monoxide, which reacts with the oxy-myoglobin to form a fairly stable cherry red carboxy-myoglobin complex may mask spoilage, because the CO-complex can be stable beyond the microbiological shelf life of the meat. The presence of CO in tuna fish has been investigated by optical spectroscopy as the formation of the CO adduct can be easily detected by the combined analysis of electronic absorption spectra in their normal and second derivative modes, monitoring the intense Soret band at 420 nm. The presence of met- and oxy-myoglobin can obscure the presence of small amounts of the CO adduct; however, it can be revealed by chemically reducing the met- and oxy-forms to the deoxy-form in an anaerobic environment. This spectroscopic method provides a qualitatively rapid laboratory screening procedure for food control to unmask the presence of CO in frozen or fresh fish. (c) 2006 Elsevier Ltd. All rights reserved

    Proximal and distal control for ligand binding in neuroglobin: role of the CD loop and evidence for His64 gating

    Get PDF
    Neuroglobin (Ngb) is predominantly expressed in neurons of the central and peripheral nervous systems and it clearly seems to be involved in neuroprotection. Engineering Ngb to observe structural and dynamic alterations associated with perturbation in ligand binding might reveal important structural determinants, and could shed light on key features related to its mechanism of action. Our results highlight the relevance of the CD loop and of Phe106 as distal and proximal controls involved in ligand binding in murine neuroglobin. We observed the effects of individual and combined mutations of the CD loop and Phe106 that conferred to Ngb higher CO binding velocities, which we correlate with the following structural observations: the mutant F106A shows, upon CO binding, a reduced heme sliding hindrance, with the heme present in a peculiar double conformation, whereas in the CD loop mutant "Gly-loop", the original network of interactions between the loop and the heme was abolished, enhancing binding via facilitated gating out of the distal His64. Finally, the double mutant, combining both mutations, showed a synergistic effect on CO binding rates. Resonance Raman spectroscopy and MD simulations support our findings on structural dynamics and heme interactions in wild type and mutated Ngbs

    The 40s Omega-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c

    Get PDF
    The structural and redox properties of a non-covalent complex reconstituted upon mixing two non-contiguous fragments of horse cytochrome c, the residues 1 - 38 heme-containing N-fragment with the residues 57 - 104 C-fragment, have been investigated. With respect to native cyt c, the complex lacks a segment of 18 residues, corresponding, in the native protein, to an omega ( W)loop region. The fragment complex shows compact structure, native-like alpha-helix content but a less rigid atomic packing and reduced stability with respect to the native protein. Structural heterogeneity is observed at pH 7.0, involving formation of an axially misligated low-spin species and consequent partial displacement of Met80 from the sixth coordination position of the heme-iron. Spectroscopic data suggest that a lysine ( located in the Met80-containing loop, namely Lys72, Lys73, or Lys79) replaces the methionine residue. The residues 1 - 38/57 - 104 fragment complex shows an unusual biphasic alkaline titration characterized by a low (pK(a1)= 6.72) and a high pK(a)-associated state transition (pK(a2)= 8.56); this behavior differs from that of native cyt c, which shows a monophasic alkaline transition ( pK(a)= 8.9). The data indicate that the 40s Omega-loop plays an important role in the stability of cyt c and in ensuring a correct alkaline conformational transition of the protein

    The Met80Ala and Tyr67His/Met80Ala mutants of human cytochrome cshed light on the reciprocal role of Met80 and Tyr67 in regulating ligand access into the heme pocket.

    Get PDF
    The spectroscopic and functional properties of the single Met80Ala and double Tyr67His/Met80Ala mutants of human cytochrome c have been investigated in their ferric and ferrous forms, and in the presence of different ligands, in order to clarify the reciprocal effect of these two residues in regulating the access of exogenous molecules into the heme pocket. In the ferric state, both mutants display an aquo high spin and a low spin species. The latter corresponds to an OH- ligand in Met80Ala but to a His in the double mutant. The existence of these two species is also reflected in the functional behavior of the mutants. The observation that (i) a significant peroxidase activity is present in the Met80Ala mutants, (ii) the substitution of the Tyr67 by His leads to only a slight increase of the peroxidase activity in the Tyr67His/Met80Ala double mutant with respect to wild type, while the Tyr67His mutant behaves as wild type, as previously reported, suggests that the peroxidase activity of cytochrome c is linked to an overall conformational change of the heme pocket and not only to the disappearance of the Fe-Met80 bond. Therefore, in human cytochrome c there is an interplay between the two residues at positions 67 and 80 that affects the conformation of the distal side of the heme pocket, and thus the sixth coordination of the hem

    The key role played by charge in the interaction of cytochrome c with cardiolipin

    Get PDF
    Cytochrome c undergoes structural variations upon binding of cardiolipin, one of the phospholipids constituting the mitochondrial membrane. Although several mechanisms governing cytochrome c/cardiolipin (cyt c/CL) recognition have been proposed, the interpretation of the process remains, at least in part, unknown. To better define the steps characterizing the cyt c-CL interaction, the role of Lys72 and Lys73, two residues thought to be important in the protein/lipid binding interaction, were recently investigated by mutagenesis. The substitution of the two (positively charged) Lys residues with Asn revealed that such mutations cancel the CL-dependent peroxidase activity of cyt c; furthermore, CL does not interact with the Lys72Asn mutant. In the present paper, we extend our study to the Lys → Arg mutants to investigate the influence exerted by the charge possessed by the residues located at positions 72 and 73 on the cyt c/CL interaction. On the basis of the present work a number of overall conclusions can be drawn: (i) position 72 must be occupied by a positively charged residue to assure cyt c/CL recognition; (ii) the Arg residues located at positions 72 and 73 permit cyt c to react with CL; (iii) the replacement of Lys72 with Arg weakens the second (low-affinity) binding transition; (iv) the Lys73Arg mutation strongly increases the peroxidase activity of the CL-bound protein

    Role of lysines in cytochrome c – cardiolipin interaction

    Get PDF
    Cytochrome c undergoes structural variations during the apoptotic process; such changes have been related with modifications occurring in the protein when it forms a complex with cardiolipin, one of the phospholipids constituting the mitochondrial membrane. Although several studies have been performed to identify the site(s) of the protein involved in the cytochrome c/cardiolipin interaction, to date the location of this hosting region(s) remains unidentified and is a matter of debate. To gain a deeper insight into the reaction mechanism, we investigate the role that the Lys72, Lys73 and Lys79 residues play in the cytochrome c/cardiolipin interaction, as these side chains appear to be critical for cytochrome c/cardiolipin recognition. The Lys72Asn, Lys73Asn, Lys79Asn, Lys72/73Asn and Lys72/73/79Asn mutants of horse heart cytochrome c were produced and characterized by circular dichroism, UV-visible and resonance Raman spectroscopies, and the effects of the mutations on the interaction of the variants with cardiolipin have been investigated. The mutants are characterized by a subpopulation with non-native axial coordination, and are less stable than the wild type protein. Furthermore, the mutants lacking Lys72 and/or Lys79 do not bind cardiolipin and those lacking Lys73, although they form a complex with the phospholipid, do not show any peroxidase activity. These observations indicate that the Lys72, Lys73 and Lys79 residues stabilize the native axial Met80-Fe(III) coordination as well as the tertiary structure of cytochrome c. Moreover, while Lys72 and Lys79 are critical for cytochrome c/cardiolipin recognition, the simultaneous presence of Lys72, Lys73 and Lys79 is necessary for peroxidase activity of cardiolipin-bound cytochrome c
    corecore