1,720 research outputs found

    Triple correlation of the Riemann zeros

    Get PDF
    We use the conjecture of Conrey, Farmer and Zirnbauer for averages of ratios of the Riemann zeta function to calculate all the lower order terms of the triple correlation function of the Riemann zeros. A previous approach was suggested in 1996 by Bogomolny and Keating taking inspiration from semi-classical methods. At that point they did not write out the answer explicitly, so we do that here, illustrating that by our method all the lower order terms down to the constant can be calculated rigourously if one assumes the ratios conjecture of Conrey, Farmer and Zirnbauer. Bogomolny and Keating returned to their previous results simultaneously with this current work, and have written out the full expression. The result presented in this paper agrees precisely with their formula, as well as with our numerical computations, which we include here. We also include an alternate proof of the triple correlation of eigenvalues from random U(N) matrices which follows a nearly identical method to that for the Riemann zeros, but is based on the theorem for averages of ratios of characteristic polynomials

    Developments in Random Matrix Theory

    Full text link
    In this preface to the Journal of Physics A, Special Edition on Random Matrix Theory, we give a review of the main historical developments of random matrix theory. A short summary of the papers that appear in this special edition is also given.Comment: 22 pages, Late

    Random Matrix Theory and the Fourier Coefficients of Half-Integral Weight Forms

    Full text link
    Conjectured links between the distribution of values taken by the characteristic polynomials of random orthogonal matrices and that for certain families of L-functions at the centre of the critical strip are used to motivate a series of conjectures concerning the value-distribution of the Fourier coefficients of half-integral weight modular forms related to these L-functions. Our conjectures may be viewed as being analogous to the Sato-Tate conjecture for integral weight modular forms. Numerical evidence is presented in support of them.Comment: 28 pages, 8 figure

    Discretisation for odd quadratic twists

    Get PDF
    The discretisation problem for even quadratic twists is almost understood, with the main question now being how the arithmetic Delaunay heuristic interacts with the analytic random matrix theory prediction. The situation for odd quadratic twists is much more mysterious, as the height of a point enters the picture, which does not necessarily take integral values (as does the order of the Shafarevich-Tate group). We discuss a couple of models and present data on this question.Comment: To appear in the Proceedings of the INI Workshop on Random Matrix Theory and Elliptic Curve

    Riemann Zeros and Random Matrix Theory

    Get PDF
    In the past dozen years random matrix theory has become a useful tool for conjecturing answers to old and important questions in number theory. It was through the Riemann zeta function that the connection with random matrix theory was first made in the 1970s, and although there has also been much recent work concerning other varieties of L-functions, this article will concentrate on the zeta function as the simplest example illustrating the role of random matrix theory.

    Autocorrelation of Random Matrix Polynomials

    Full text link
    We calculate the autocorrelation functions (or shifted moments) of the characteristic polynomials of matrices drawn uniformly with respect to Haar measure from the groups U(N), O(2N) and USp(2N). In each case the result can be expressed in three equivalent forms: as a determinant sum (and hence in terms of symmetric polynomials), as a combinatorial sum, and as a multiple contour integral. These formulae are analogous to those previously obtained for the Gaussian ensembles of Random Matrix Theory, but in this case are identities for any size of matrix, rather than large-matrix asymptotic approximations. They also mirror exactly autocorrelation formulae conjectured to hold for L-functions in a companion paper. This then provides further evidence in support of the connection between Random Matrix Theory and the theory of L-functions
    corecore