1,017 research outputs found

    Substance P-immunoreactive neurons in hamster retinas

    Get PDF
    Light-microscopic immunocytochemistry was utilized to localize the different populations of substance P-immunoreactive (SP-IR) neurons in the hamster retina. Based on observation of 2505 SP-IR neurons in transverse sections, 34% were amacrine cells whose pear-shaped or round cell bodies (7-8 μm) were situated in the inner half of the inner nuclear layer (INL) or in the inner plexiform layer (IPL), while 66% of SP-IR somata (6-20 μm) were located in the ganglion cell layer (GCL) which were interpreted to be displaced amacrine cells and retinal ganglion cells (RGCs). At least three types of SP-IR amacrine cells were identified. The SP-IR processes were distributed in strata 1, 3, and 5 with the densest plexus in stratum 5 of the inner plexiform layer. In the wholemounted retina, the SP-IR cells were found to be distributed throughout the entire retina and their mean number was estimated to be 4224 ± 76. Two experiments were performed to clarify whether any of the SP-IR neurons in the GCL were RGCs. The first experiment demonstrated the presence of SP-IR RGCs by retrogradely labeling the RGCs and subsequently staining the SP-IR cells in the retina using immunocytochemistry. The second experiment identified SP-IR central projections of RGCs to the contralateral dorsal lateral geniculate nucleus. This projection disappeared following removal of the contralateral eye. The number of SP-IR RGCs was estimated following optic nerve section. At 2 months after sectioning the optic nerve, the total number of SP-IR neurons in the GCL reduced from 4224 ± 76 to a mean of 1192 ± 139. Assuming that all SP-IR neurons in the GCL which disappeared after nerve section were RGCs, the number of SP-IR RGCs was estimated to be 3032, representing 3-4% of the total RGCs. In summary, findings of the present study provide evidence for the existence of SP-IR RGCs in the hamster retina.published_or_final_versio

    Spin Seebeck insulator

    Full text link
    Thermoelectric generation is an essential function of future energy-saving technologies. However, this generation has been an exclusive feature of electric conductors, a situation which inflicts a heavy toll on its application; a conduction electron often becomes a nuisance in thermal design of devices. Here we report electric-voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, a magnetic insulator LaY2Fe5O12 converts a heat flow into spin voltage. Attached Pt films transform this spin voltage into electric voltage by the inverse spin Hall effect. The experimental results require us to introduce thermally activated interface spin exchange between LaY2Fe5O12 and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.Comment: 19 pages, 5 figures (including supplementary information

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    On the Complexity of Scheduling in Wireless Networks

    Get PDF
    We consider the problem of throughput-optimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of K-hop interference models, under which no two links within a K-hop distance can successfully transmit at the same time. For a given K, we can obtain a throughput-optimal scheduling policy by solving the well-known maximum weighted matching problem. We show that for K > 1, the resulting problems are NP-Hard that cannot be approximated within a factor that grows polynomially with the number of nodes. Interestingly, for geometric unit-disk graphs that can be used to describe a wide range of wireless networks, the problems admit polynomial time approximation schemes within a factor arbitrarily close to 1. In these network settings, we also show that a simple greedy algorithm can provide a 49-approximation, and the maximal matching scheduling policy, which can be easily implemented in a distributed fashion, achieves a guaranteed fraction of the capacity region for "all K." The geometric constraints are crucial to obtain these throughput guarantees. These results are encouraging as they suggest that one can develop low-complexity distributed algorithms to achieve near-optimal throughput for a wide range of wireless networksopen1

    Evolutionary and pulsational properties of white dwarf stars

    Get PDF
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    A scoping review of the implications of adult obesity in the delivery and acceptance of dental care.

    Get PDF
    Background Due to the increasing prevalence of obesity within the general population it is presumed that the prevalence of overweight and obese adults accessing dental services will also increase. For this reason dentists need to be aware of implications of managing such patients.Methods A scoping review was carried out. Both Medline via OVID and Scopus databases were searched along with grey literature databases and the websites of key organizations. Inclusion and exclusion criteria were established. The data were collected on a purpose-made data collection form and analysed descriptively.Results The review identified 28 relevant published articles and two relevant items of grey literature. Following review of this literature three themes relating to adult obesity in the delivery and acceptance of dental care emerged; clinical, service delivery and patient implications. The majority of the papers focused on the clinical implications.Conclusion On the topic of adult obesity and dental care, the majority of published and grey literature focuses on the clinical implications. Further research is needed on both the patients' perspectives of being overweight or obese and the delivery and acceptance of dental care and the service delivery implications

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells

    How does it feel to act together?

    Get PDF
    This paper on the phenomenology of joint agency proposes a foray into a little explored territory at the intersection of two very active domains of research: joint action and sense of agency. I explore two ways in which our experience of joint agency may differ from our experience of individual agency. First, the mechanisms of action specification and control involved in joint action are typically more complex than those present in individual actions, since it is crucial for joint action that people coordinate their plans and actions. I discuss the implications that these coordination requirements might have for the strength of the sense of agency an agent may experience for a joint action. Second, engagement in joint action may involve a transformation of agentive identity and a partial or complete shift from a sense of self-agency to a sense of we-agency. I discuss several factors that may contribute to shaping our sense of agentive identity in joint action

    Incidence and Implications of Culture-Positive Corneoscleral Rims in Corneal Transplantation

    Get PDF
    Zuheer Meeraalam,1 Shaker O Alreshidi,2 Hani B ALBalawi,3 Naif M Alali,3 Faris Hashem,3 Omar M Kirat4 1Ophthalmology Department, Prince Sultan Military Medical City, Riyadh, Saudi Arabia; 2Ophthalmology Division, Department of Surgical Specialties, College of Medicine, Majmaah University, Majmaah, Saudi Arabia; 3Division of Ophthalmology, Department of Surgery, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia; 4Anterior Segment Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi ArabiaCorrespondence: Hani B ALBalawi, Division of Ophthalmology, Department of Surgery, Faculty of Medicine, University of Tabuk, Tabuk, 71491, Saudi Arabia, Email [email protected]: Corneal transplantation is a critical procedure for restoring vision affected by different corneal pathologies. However, postoperative infections threaten graft survival, particularly microbial keratitis and endophthalmitis.Objective: This study aims to evaluate the incidence of culture-positive corneoscleral rims (CPCR) among transplanted corneas at a tertiary eye hospital and explore its association with death-preservation and preservation-surgery times.Methods: A retrospective analysis of keratoplasty surgeries performed in 2015 was conducted, involving 603 cases meeting the study criteria.Results: The incidence of CPCR was found to be 4.6%, predominantly bacterial (68%), with Methicillin-resistant Staphylococcus epidermidis (MRSE) being the most common isolate, followed by fungal (32%) species, notably Candida. However, none of the cases developed subsequent keratitis or endophthalmitis post-transplantation. Statistical analysis revealed no significant association between CPCR occurrence and death-preservation or preservation-surgery times.Conclusion: The study underscores the reduced impact of contaminated CPCR on graft outcomes, advocating for targeted fungal culturing, intraoperative practices to mitigate post-transplant infections, and maintaining current prophylactic antibiotic regimens, such as optisolGS ™, which contains streptomycin and gentamicin.Keywords: corneal transplant, keratitis, endophthalmitis, infection, bacterial keratiti

    Radiative and magnetohydrodynamics flow of third grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption

    Get PDF
    A mathematical analysis is presented to investigate the nonlinear, isothermal, steady-state, free convection boundary layer flow of an incompressible third grade viscoelastic fluid past an isothermal inverted cone in the presence of magnetohydrodynamic, thermal radiation and heat generation/absorption. The transformed conservation equations for linear momentum, heat and mass are solved numerically subject to the realistic boundary conditions using the second-order accurate implicit finite-difference Keller Box Method. The numerical code is validated with previous studies. Detailed interpretation of the computations is included. The present simulations are of interest in chemical engineering systems and solvent and low-density polymer materials processing
    corecore