17 research outputs found

    Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases

    Get PDF
    Cancer is a multifactorial disorder involving multiplicity of interrelated signaling pathways and molecular targets. To that end, a multi-target design strategy was adopted to develop some 1,2,3-triazoles hybridized with some pharmacophoric anticancer fragments, as first-in-class simultaneous inhibitors of COX-2, 15-LOX and tumor associated carbonic anhydrase enzymes. Results revealed that compounds 5a, 5d, 8b and 8c were potent inhibitors of COX-2 and 15-LOX enzymes. COX-2 inhibitory activity was further demonstrated by the inhibition of the accumulation of 6-keto-PGF1α, a metabolite of COX-2 products in two cancer cell lines. The sulfonamide bearing derivatives 5d and 8c were effective nanomolar and submicromolar inhibitors of tumor associated hCA XII isoform, respectively. Strong to moderate inhibitory activities were observed in the in vitro antiproliferative assay on lung (A549), liver (HepG2) and breast (MCF7) cancer cell lines (IC50 2.37–28.5 μM) with high safety margins on WI-38 cells. A cytotoxic advantage of CA inhibition was observed as an increased activity against tumor cell lines expressing CA IX/XII. Further mechanistic clues for the anticancer activities of compound 5a and its sulfonamide analog 5d were derived from induction of cell cycle arrest at G2/M phase. They also triggered apoptosis via increasing expression levels of caspase-9 and Bax together with suppressing that of Bcl-2. The in vitro anti-tumor activity was reflected as reduced tumor size upon treatment with 8c in an in vivo cancer xenograft model. Docking experiments on the target enzymes supported their in vitro data and served as further molecular evidence. In silico calculations and ligand efficiency indices were promising. In light of these data, such series could offer new structural insights into the understanding and development of multi-target COX-2/15-LOX/hCA inhibitors for anticancer outcomes. © 2020 Elsevier Masson SA

    )‐thione

    No full text

    New pyrimidines and triazolopyrimidines as antiproliferative and antioxidants with cyclooxygenase-1/2 inhibitory potential

    Full text link
    Aim: Cyclooxygenase-2 (COX-2) inhibition and scavenging-free radicals are important targets in cancer treatment. Materials &amp; methods: Sulfanylpyrimidines and triazolopyrimidines were synthesized and evaluated as anticancer and antioxidant COX-1/2 inhibitors. Results: Compound 7 showed the same growth inhibitory activity as 5-fluorouracil against MCF-7. Compound 6f displayed broad-spectrum anticancer activity against the four tested cancer cell lines. Compounds 5b, 6a, 6c, 6d and 8 were found to be more active antioxidants than trolox. Compounds 6a, 6c, 6f and 8 revealed high COX-2 inhibitory activity and selectivity, which was confirmed by docking studies. Conclusion: Compound 6f could be considered as promising anticancer and antioxidant structural lead with COX-2 inhibition that deserve further derivatization and investigation. </jats:p

    Rational Design and Synthesis of New Selective COX-2 Inhibitors with In Vivo PGE2-Lowering Activity by Tethering Benzenesulfonamide and 1,2,3-Triazole Pharmacophores to Some NSAIDs

    No full text
    New selective COX-2 inhibitors were designed and synthesized by tethering 1,2,3-triazole and benzenesulfonamide pharmacophores to some NSAIDs. Compounds 6b and 6j showed higher in vitro COX-2 selectivity and inhibitory activity (IC50 = 0.04 &micro;M and S.I. = 329 and 312, respectively) than celecoxib (IC50 = 0.05 &micro;M and S.I. = 294). Compound 6e revealed equipotent in vitro COX-2 inhibitory activity to celecoxib. Furthermore, 6b and 6j expressed more potent relief of carrageenan-induced paw edema thickness in mice than celecoxib, with ED50 values of 11.74 &micro;mol/kg and 13.38 &micro;mol/kg vs. 16.24 &micro;mol/kg, respectively. Compounds 6b and 6j inhibited the production of PGE2 with a % inhibition of PGE2 production of 90.70% and 86.34%, respectively, exceeding celecoxib&rsquo;s percentage (78.62%). Moreover, 6b and 6j demonstrated a gastric safety profile comparable to celecoxib. In conclusion, compounds 6b and 6j better achieved the target goal as more potent and selective COX-2 inhibitors than celecoxib in vitro and in vivo
    corecore