12 research outputs found
Anharmonicity-induced isostructural phase transition of Zirconium under pressure
We have performed a detailed x-ray diffraction structural study of Zr under
pressure and unambiguously identify the existence of a first-order
isostructural bcc-to-bcc phase transition near 58 GPa. First-principles quantum
molecular dynamics lattice dynamics calculations support the existence of this
phase transition, in excellent agreement with experimental results, triggered
by anharmonic effects. Our results highlight the potential ubiquity of
anharmonically driven isostructural transitions within the periodic table under
pressure and calls for follow-up experimental and theoretical studies
Quantifying the Importance of Orbital Over Spin Correlations in δ-Pu Within Density-Functional Theory
AbstractThe electronic structure of plutonium is studied within the density-functional theory (DFT) model. Key features of the electronic structure are correctly modeled and bonding, total energy, and electron density of states are all consistent with measure data, although the prediction of magnetism is not consistent with many observations. Here we analyze the contributions to the electronic structure arising from spin polarization, orbital polarization, and spin-orbit interaction. These effects give rise to spin and orbital moments that are of nearly equal magnitude, but anti-parallel, suggesting a magnetic-moment cancellation with a zero total moment. Quantifying the spin versus orbital effects on the bonding, total energy, and electron spectra it becomes clear that the spin polarization is much less important than the orbital correlations. Consequently, a restricted DFT approach with a non-spin polarized electronic structure can produce reasonable equation-of-state and electron spectra for δ-Pu when the orbital effects are accounted for. Hence, we present two non-magnetic models. One in which the spin moment is canceled by the orbital moment and another in which the spin moment (and therefore the orbital moment) is restricted to zero.</jats:p
Cancellation of spin and orbital magnetic moments in (delta)-Pu: theory Cancellation of spin and orbital magnetic moments in d-Pu: theory
ABSTRACT Density functional theory (DFT), in conjunction with the fixed-spin-moment (FSM) method, spin-orbit coupling (SO), and orbital polarization (OP), is shown to retain key features of the conventional DFT treatment of d-Pu while at the same time not producing the substantial net magnetic moments commonly predicted by this theory. It is shown that when a small adjustment of the spin moment (less than 20%) is allowed, a complete spin-and orbital-moment cancellation occurs which results in a zero net magnetic moment in d-Pu. This minor modification, accomplished by the FSM method, is shown to have a very small effect on the calculated total energy as well as the electron density-of-states (DOS). The photoemission spectra (PES), obtained from the DOS of the present model, compares equal or better to measured spectra, than that of two other recent non-magnetic models for d-Pu
Recommended from our members
First-Principles Phase Diagram for Ce-Th System
Ab initio total energy calculations based on the exact muffin-tin orbitals (EMTO) theory are used to determine the high pressure and low temperature phase diagram of Ce and Th metals as well as the Ce{sub 43}Th{sub 57} disordered alloy. The compositional disorder for the alloy is treated in the framework of the coherent potential approximation (CPA). Equation of state for Ce, Th and Ce{sub 43}Th{sub 57} has been calculated up to 1 Mbar in good comparison with experimental data: upon compression the Ce-Th system undergoes crystallographic phase transformation from an fcc to a bct structure and the transition pressure increases with Th content in the alloy
Search For a Consistent Mean-Field Treatment of Magnetic Properties of Yittrium-Cobalt-5 Under Moderate Hydrostatic Stress
Effect of water vapour on gallium doped zinc oxide nanoparticle sensor gas response
Zinc oxide is a wide band gap (similar to 3.4ev) semiconductor material, making it a promising material for high temperature applications, such as exhaust and flue environments where NO and NO2 monitoring is increasingly required due to stricter emission controls[1]. In these environments water vapour and background levels of oxygen are present and, as such, the effect of humidity on the sensing characteristics of these materials requires further study. The reaction mechanisms in the presence of water vapour are poorly understood and there is a need for deeper understanding of the principles and mechanisms of gas response of these materials. An investigation of the influence of changing water vapour (H2O) and oxygen (O-2) backgrounds on the response of nanoparticulate Ga-doped ZnO resistive sensors is presented.</p
LLNL-PROC-400532 Quantum-Based Atomistic Simulation of Metals at Extreme Conditions QUANTUM-BASED ATOMISTIC SIMULATION OF METALS AT EXTREME CONDITIONS
Abstract First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for bridging the quantum-atomistic gap from density-functional quantum mechanics to large scale atomistic simulation in metals and alloys. In directionally-bonded bcc transition metals, advanced generation model GPT or MGPT potentials based on canonical d bands have been developed for Ta, Mo and V and successfully applied to a wide range of thermodynamic and mechanical properties at both ambient and extreme conditions of pressure and temperature, including high-pressure phase transitions, multiphase equation of state; melting and solidification; thermoelasticity; and the atomistic simulation of point defects, dislocations and grain boundaries needed for the multiscale modeling of plasticity and strength. Recent algorithm improvements have also allowed an MGPT implementation beyond canonical bands to achieve increased accuracy, extension to f-electron actinide metals, and high computational speed. A further advance in progress is the development temperature-dependent MGPT potentials that subsume electron-thermal contributions to high-temperature properties
Nonstandard errors
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty-nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.A
