1,536 research outputs found
Optimized Quantification of Spin Relaxation Times in the Hybrid State
Purpose: The analysis of optimized spin ensemble trajectories for relaxometry
in the hybrid state.
Methods: First, we constructed visual representations to elucidate the
differential equation that governs spin dynamics in hybrid state. Subsequently,
numerical optimizations were performed to find spin ensemble trajectories that
minimize the Cram\'er-Rao bound for -encoding, -encoding, and their
weighted sum, respectively, followed by a comparison of the Cram\'er-Rao bounds
obtained with our optimized spin-trajectories, as well as Look-Locker and
multi-spin-echo methods. Finally, we experimentally tested our optimized spin
trajectories with in vivo scans of the human brain.
Results: After a nonrecurring inversion segment on the southern hemisphere of
the Bloch sphere, all optimized spin trajectories pursue repetitive loops on
the northern half of the sphere in which the beginning of the first and the end
of the last loop deviate from the others. The numerical results obtained in
this work align well with intuitive insights gleaned directly from the
governing equation. Our results suggest that hybrid-state sequences outperform
traditional methods. Moreover, hybrid-state sequences that balance - and
-encoding still result in near optimal signal-to-noise efficiency. Thus,
the second parameter can be encoded at virtually no extra cost.
Conclusion: We provide insights regarding the optimal encoding processes of
spin relaxation times in order to guide the design of robust and efficient
pulse sequences. We find that joint acquisitions of and in the
hybrid state are substantially more efficient than sequential encoding
techniques.Comment: 10 pages, 5 figure
High Impedance Detector Arrays for Magnetic Resonance
Resonant inductive coupling is commonly seen as an undesired fundamental
phenomenon emergent in densely packed resonant structures, such as nuclear
magnetic resonance phased array detectors. The need to mitigate coupling
imposes rigid constraints on the detector design, impeding performance and
limiting the scope of magnetic resonance experiments. Here we introduce a high
impedance detector design, which can cloak itself from electrodynamic
interactions with neighboring elements. We verify experimentally that the high
impedance detectors do not suffer from signal-to-noise degradation mechanisms
observed with traditional low impedance elements. Using this new-found
robustness, we demonstrate an adaptive wearable detector array for magnetic
resonance imaging of the hand. The unique properties of the detector glove
reveal new pathways to study the biomechanics of soft tissues, and exemplify
the enabling potential of high-impedance detectors for a wide range of
demanding applications that are not well suited to traditional coil designs.Comment: 16 pages, 12 figures, videos available upon reques
Структура и закономерности науки
Cardiovascular MR imaging (CVMR) has become a valuable diagnostic imaging modality for the non-invasive detection cardiovascular diseases. In this review, first key concepts and practical considerations of parallel CVMR are outlined. Next, highly accelerated CVMR applications are reviewed, ranging from cardiac anatomical and functional assessment to myocardial perfusion and viability to MR angiography of the coronary arteries and the large vessels. Finally, current trends, including the broad move towards high field imaging, and future directions in highly parallel CVMR are considered..
Hybrid-State Free Precession in Nuclear Magnetic Resonance
The dynamics of large spin-1/2 ensembles in the presence of a varying
magnetic field are commonly described by the Bloch equation. Most magnetic
field variations result in unintuitive spin dynamics, which are sensitive to
small deviations in the driving field. Although simplistic field variations can
produce robust dynamics, the captured information content is impoverished.
Here, we identify adiabaticity conditions that span a rich experiment design
space with tractable dynamics. These adiabaticity conditions trap the spin
dynamics in a one-dimensional subspace. Namely, the dynamics is captured by the
absolute value of the magnetization, which is in a transient state, while its
direction adiabatically follows the steady state. We define the hybrid state as
the co-existence of these two states and identify the polar angle as the
effective driving force of the spin dynamics. As an example, we optimize this
drive for robust and efficient quantification of spin relaxation times and
utilize it for magnetic resonance imaging of the human brain
Classical Limit of Demagnetization in a Field Gradient
We calculate the rate of decrease of the expectation value of the transverse
component of spin for spin-1/2 particles in a magnetic field with a spatial
gradient, to determine the conditions under which a previous classical
description is valid. A density matrix treatment is required for two reasons.
The first arises because the particles initially are not in a pure state due to
thermal motion. The second reason is that each particle interacts with the
magnetic field and the other particles, with the latter taken to be via a
2-body central force. The equations for the 1-body Wigner distribution
functions are written in a general manner, and the places where quantum
mechanical effects can play a role are identified. One that may not have been
considered previously concerns the momentum associated with the magnetic field
gradient, which is proportional to the time integral of the gradient. Its
relative magnitude compared with the important momenta in the problem is a
significant parameter, and if their ratio is not small some non-classical
effects contribute to the solution.
Assuming the field gradient is sufficiently small, and a number of other
inequalities are satisfied involving the mean wavelength, range of the force,
and the mean separation between particles, we solve the integro- partial
differential equations for the Wigner functions to second order in the strength
of the gradient. When the same reasoning is applied to a different problem with
no field gradient, but having instead a gradient to the z-component of
polarization, the connection with the diffusion coefficient is established, and
we find agreement with the classical result for the rate of decrease of the
transverse component of magnetization.Comment: 22 pages, no figure
Hadamard Products of Product Operators and the Design of Gradient-Diffusion Experiments for Simulating Decoherence by NMR Spectroscopy
An extension of the product operator formalism of NMR is introduced, which
uses the Hadamard matrix product to describe many simple spin 1/2 relaxation
processes. The utility of this formalism is illustrated by deriving NMR
gradient-diffusion experiments to simulate several decoherence models of
interest in quantum information processing, along with their Lindblad and Kraus
representations. Gradient-diffusion experiments are also described for several
more complex forms of decoherence, including the well-known collective
isotropic model. Finally, it is shown that the Hadamard formalism gives a
concise representation of decoherence with arbitrary correlations among the
fluctuating fields at the different spins involved, and that this can be
applied to both decoherence (T2) as well as nonadiabatic relaxation (T1)
processes.Comment: RevTeX, 11 page single-spaced preprint, no figures. Version two has
new title, abstract, introduction & conclusions, while the main body of the
text remains substantially the sam
Simulations of Quantum Logic Operations in Quantum Computer with Large Number of Qubits
We report the first simulations of the dynamics of quantum logic operations
with a large number of qubits (up to 1000). A nuclear spin chain in which
selective excitations of spins is provided by the gradient of the external
magnetic field is considered. The spins interact with their nearest neighbors.
We simulate the quantum control-not (CN) gate implementation for remote qubits
which provides the long-distance entanglement. Our approach can be applied to
any implementation of quantum logic gates involving a large number of qubits.Comment: 13 pages, 15 figure
- …
