8,258 research outputs found

    Mesoscopic Capacitance Oscillations

    Full text link
    We examine oscillations as a function of Fermi energy in the capacitance of a mesoscopic cavity connected via a single quantum channel to a metallic contact and capacitively coupled to a back gate. The oscillations depend on the distribution of single levels in the cavity, the interaction strength and the transmission probability through the quantum channel. We use a Hartree-Fock approach to exclude self-interaction. The sample specific capacitance oscillations are in marked contrast to the charge relaxation resistance, which together with the capacitance defines the RC-time, and which for spin polarized electrons is quantized at half a resistance quantum. Both the capacitance oscillations and the quantized charge relaxation resistance are seen in a strikingly clear manner in a recent experiment.Comment: 9 pages, 2 figure

    Mass accretion rates of clusters of galaxies: CIRS and HeCS

    Full text link
    We use a new spherical accretion recipe tested on N-body simulations to measure the observed mass accretion rate (MAR) of 129 clusters in the Cluster Infall Regions in the Sloan Digital Sky Survey (CIRS) and in the Hectospec Cluster Survey (HeCS). The observed clusters cover the redshift range of 0.01<z<0.300.01<z<0.30 and the mass range of 10141015h1 M\sim 10^{14}-10^{15} {h^{-1}~\rm{M_\odot}}. Based on three-dimensional mass profiles of simulated clusters reaching beyond the virial radius, our recipe returns MARs that agree with MARs based on merger trees. We adopt this recipe to estimate the MAR of real clusters based on measurements of the mass profile out to 3R200\sim 3R_{200}. We use the caustic method to measure the mass profiles to these large radii. We demonstrate the validity of our estimates by applying the same approach to a set of mock redshift surveys of a sample of 2000 simulated clusters with a median mass of M200=1014h1 MM_{200}= 10^{14} {h^{-1}~\rm{M_{\odot}}} as well as a sample of 50 simulated clusters with a median mass of M200=1015h1 MM_{200}= 10^{15} {h^{-1}~\rm{M_{\odot}}}: the median MARs based on the caustic mass profiles of the simulated clusters are unbiased and agree within 19%19\% with the median MARs based on the real mass profile of the clusters. The MAR of the CIRS and HeCS clusters increases with the mass and the redshift of the accreting cluster, which is in excellent agreement with the growth of clusters in the Λ\LambdaCDM model.Comment: 25 pages, 19 figures, 7 table

    Application of computer-aided dispatch in law enforcement: An introductory planning guide

    Get PDF
    A set of planning guidelines for the application of computer-aided dispatching (CAD) to law enforcement is presented. Some essential characteristics and applications of CAD are outlined; the results of a survey of systems in the operational or planning phases are summarized. Requirements analysis, system concept design, implementation planning, and performance and cost modeling are described and demonstrated with numerous examples. Detailed descriptions of typical law enforcement CAD systems, and a list of vendor sources, are given in appendixes

    Anti-phase locking in a two-dimensional Josephson junction array

    Full text link
    We consider theoretically phase locking in a simple two-dimensional Josephson junction array consisting of two loops coupled via a joint line transverse to the bias current. Ring inductances are supposed to be small, and special emphasis is taken on the influence of external flux. Is is shown, that in the stable oscillation regime both cells oscillate with a phase shift equal to π\pi (i.e. anti-phase). This result may explain the low radiation output obtained so far in two-dimensional Josephson junction arrays experimentally.Comment: 11 pages, REVTeX, 1 Postscript figure, Subm. to Appl. Phys. Let

    Significance of low energy impact damage on modal parameters of composite beams by design of experiments

    Get PDF
    This paper presents an experimental study on the effects of multi-site damage on the vibration response of composite beams damaged by low energy impacts around the barely visible impact damage limit (BVID). The variation of the modal parameters with different levels of impact energy and density of damage is studied. Vibration tests have been carried out with both burst random and classical sine dwell excitations in order to compare that which of the methods among Polymax and Half Bandwidth Method is more suitable for damping estimation in the presence of damage. Design of experiments (DOE) performed on the experimental data show that natural frequency is a more sensitive parameter for damage detection than the damping ratio. It also highlighted energy of impact as the factor having a more significant effect on the modal parameters. Half Bandwidth Method is found to be unsuitable for damping estimation in the presence of damage

    An Experimentally Realizable Weiss Model for Disorder-Free Glassiness

    Full text link
    We summarize recent work on a frustrated periodic long-range Josephson array in a parameter regime where its dynamical behavior is identical to that of the p=4p=4 disordered spherical model. We also discuss the physical requirements imposed by the theory on the experimental realization of this superconducting network.Comment: 6 pages, LaTeX, 2 Postscript figure

    Danish values, the foundation of the Folkeskole

    Get PDF
    We have imaged with Hubble Space Telescope WFC3/UVIS the central 2′7 × 2′7 region of the giant elliptical galaxy M87, using the ultraviolet filter F275W. In combination with archival ACS/WFC data taken through the F606W and F814W filters, covering the same field, we have constructed integrated-light UV-optical colors and magnitudes for 1460 objects, most of which are believed to be globular clusters (GCs) belonging to M87. The purpose was to ascertain whether the multiple-populations syndrome, ubiquitous among Galactic GCs, also exists among the M87 family of clusters. To achieve this goal, we sought those GCs with exceptionally blue UV-to-optical colors because helium-enriched sub-populations produce a horizontal-branch morphology that is well populated at high effective temperature. For comparison, integrated, synthetic UV-optical and purely optical colors and magnitudes have been constructed for 45 Galactic GCs, starting from individual-star photometry obtained with the same instruments and the same filters. We identify a small group of M87 clusters exhibiting a radial UV-optical color gradient, representing our best candidate GCs hosting multiple populations with extreme helium content. We also find that the central spatial distribution of the bluer GCs is flattened in a direction parallel to the jet, while the distribution of redder GCs is more spherical. We release to the astronomical community our photometric catalog in F275W, F606W, and F814W bands and the high-quality image stacks in the same bands

    Building a personal symbolic space model from GSM CellID Positioning Data

    Get PDF
    Série : Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 7The context in which a person uses a mobile context-aware application can be described by many dimensions, including the, most popular, location and position. Some of the data used to describe these dimensions can be acquired directly from sensors or computed by reasoning algorithms. In this paper we propose to contextualize the mobile user of context-aware applications by describing his/her location in a symbolic space model as an alternative to the use of a position represented by a pair of coordinates in a geometric absolute referential. By exploiting the ubiquity of GSM networks, we describe a method to progressively create this symbolic and personal space model, and propose an approach to compute the level of familiarity a person has with each of the identified places. The validity of the developed model is evaluated by comparing the identified places and the computed values for the familiarity index with a ground truth represented by GPS data and the detailed agenda of a few persons

    The Extended Shapes of Galactic Satellites

    Full text link
    We are exploring the extended stellar distributions of Galactic satellite galaxies and globular clusters. For seven objects studied thus far, the observed profile departs from a King function at large r, revealing a ``break population'' of stars. In our sample, the relative density of the ``break'' correlates to the inferred M/L of these objects. We discuss opposing hypotheses for this trend: (1) Higher M/L objects harbor more extended dark matter halos that support secondary, bound, stellar ``halos''. (2) The extended populations around dwarf spheroidals (and some clusters) consist of unbound, extratidal debris from their parent objects, which are undergoing various degrees of tidal disruption. In this scenario, higher M/L ratios reflect higher degrees of virial non-equilibrium in the parent objects, thus invalidating a precept underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of Galaxies and Their Halo

    Charge fluctuations in open chaotic cavities

    Full text link
    We present a discussion of the charge response and the charge fluctuations of mesoscopic chaotic cavities in terms of a generalized Wigner-Smith matrix. The Wigner-Smith matrix is well known in investigations of time-delay of quantum scattering. It is expressed in terms of the scattering matrix and its derivatives with energy. We consider a similar matrix but instead of an energy derivative we investigate the derivative with regard to the electric potential. The resulting matrix is then the operator of charge. If this charge operator is combined with a self-consistent treatment of Coulomb interaction, the charge operator determines the capacitance of the system, the non-dissipative ac-linear response, the RC-time with a novel charge relaxation resistance, and in the presence of transport a resistance that governs the displacement currents induced into a nearby conductor. In particular these capacitances and resistances determine the relaxation rate and dephasing rate of a nearby qubit (a double quantum dot). We discuss the role of screening of mesoscopic chaotic detectors. Coulomb interaction effects in quantum pumping and in photon assisted electron-hole shot noise are treated similarly. For the latter we present novel results for chaotic cavities with non-ideal leads.Comment: 29 pages, 13 figures;v.2--minor changes; contribution for the special issue of J. Phys. A on "Trends in Quantum Chaotic Scattering
    corecore