652 research outputs found

    Nonstationary flow for the Navier-Stokes equations in a cylindrical pipe

    Full text link
    In cylindrical domain, we consider the nonstationary flow with prescribed inflow and outflow, modelled with Navier-Stokes equations under the slip boundary conditions. Using smallness of some derivatives of inflow function, external force and initial velocity of the flow, but with no smallness restrictions on the inflow, initial velocity neither force, we prove existence of solutions in $W^{2,1}_2.

    Self-gravitating elastic bodies

    Full text link
    Extended objects in GR are often modelled using distributional solutions of the Einstein equations with point-like sources, or as the limit of infinitesimally small "test" objects. In this note, I will consider models of finite self-gravitating extended objects, which make it possible to give a rigorous treatment of the initial value problem for (finite) extended objects.Comment: 16 pages. Based on a talk given at the 2013 WE-Heraeus seminar on "Equations of motion in relativistic gravity

    Necessary Optimality Conditions for a Dead Oil Isotherm Optimal Control Problem

    Full text link
    We study a system of nonlinear partial differential equations resulting from the traditional modelling of oil engineering within the framework of the mechanics of a continuous medium. Recent results on the problem provide existence, uniqueness and regularity of the optimal solution. Here we obtain the first necessary optimality conditions.Comment: 9 page

    Existence of global strong solutions in critical spaces for barotropic viscous fluids

    Get PDF
    This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N2N\geq2. We address the question of the global existence of strong solutions for initial data close from a constant state having critical Besov regularity. In a first time, this article show the recent results of \cite{CD} and \cite{CMZ} with a new proof. Our result relies on a new a priori estimate for the velocity, where we introduce a new structure to \textit{kill} the coupling between the density and the velocity as in \cite{H2}. We study so a new variable that we call effective velocity. In a second time we improve the results of \cite{CD} and \cite{CMZ} by adding some regularity on the initial data in particular ρ0\rho_{0} is in H1H^{1}. In this case we obtain global strong solutions for a class of large initial data on the density and the velocity which in particular improve the results of D. Hoff in \cite{5H4}. We conclude by generalizing these results for general viscosity coefficients

    Partial regularity for the Navier-Stokes-Fourier system

    Full text link
    This paper addresses a nonstationary flow of heat-conductive incompressible Newtonian fluid with temperature-dependent viscosity coupled with linear heat transfer with advection and a viscous heat source term, under Navier/Dirichlet boundary conditions. The partial regularity for the velocity of the fluid is proved to each proper weak solution, that is, for such weak solutions which satisfy some local energy estimates in a similar way to the suitable weak solutions of the Navier-Stokes system. Finally, we study the nature of the set of points in space and time upon which proper weak solutions could be singular.Comment: 25 pages, v2: Navier/Dirichlet boundary conditions replace homogeneous Dirichlet boundary condition

    Resolvent Estimates in L^p for the Stokes Operator in Lipschitz Domains

    Full text link
    We establish the LpL^p resolvent estimates for the Stokes operator in Lipschitz domains in RdR^d, d3d\ge 3 for 1p1/2<12d+ϵ|\frac{1}{p}-1/2|< \frac{1}{2d} +\epsilon. The result, in particular, implies that the Stokes operator in a three-dimensional Lipschitz domain generates a bounded analytic semigroup in LpL^p for (3/2)-\varep < p< 3+\epsilon. This gives an affirmative answer to a conjecture of M. Taylor.Comment: 28 page. Minor revision was made regarding the definition of the Stokes operator in Lipschitz domain

    On the Interface Formation Model for Dynamic Triple Lines

    Full text link
    This paper revisits the theory of Y. Shikhmurzaev on forming interfaces as a continuum thermodynamical model for dynamic triple lines. We start with the derivation of the balances for mass, momentum, energy and entropy in a three-phase fluid system with full interfacial physics, including a brief review of the relevant transport theorems on interfaces and triple lines. Employing the entropy principle in the form given in [Bothe & Dreyer, Acta Mechanica, doi:10.1007/s00707-014-1275-1] but extended to this more general case, we arrive at the entropy production and perform a linear closure, except for a nonlinear closure for the sorption processes. Specialized to the isothermal case, we obtain a thermodynamically consistent mathematical model for dynamic triple lines and show that the total available energy is a strict Lyapunov function for this system
    corecore