387 research outputs found

    Does hybridization between divergent progenitors drive whole-genome duplication?

    Get PDF
    This is the peer reviewed version of the following article: BUGGS, R. J. A., SOLTIS, P. S. and SOLTIS, D. E. (2009), Does hybridization between divergent progenitors drive whole-genome duplication?. Molecular Ecology, 18: 3334–3339, which has been published in final form at http://dx.doi.org/10.1111/j.1365-294X.2009.04285.x This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving

    Tissue-specific silencing of homoeologs in natural populations of the recent allopolyploid Tragopogon mirus

    Get PDF
    The definitive version is available at www3.interscience.wiley.com http://dx.doi.org/10.1111/j.1469-8137.2010.03205.

    The evolutionary significance of polyploidy

    Get PDF
    Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity

    Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111924/1/nph13491-sup-0001-FigS1-TableS1-S2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/111924/2/nph13491.pd

    Sex stereotypes influence adults' perception of babies' cries

    Get PDF
    Background: Despite widespread evidence that gender stereotypes influence human parental behavior, their potential effects on adults’ perception of babies’ cries have been overlooked. In particular, whether adult listeners overgeneralize the sex dimorphism that characterizes the voice of adult speakers (men are lower-pitched than women) to their perception of babies’ cries has not been investigated. Methods: We used playback experiments combining natural and re-synthesised cries of 3 month-old babies to investigate whether the interindividual variation in the fundamental frequency (pitch) of cries affected adult listeners’ identification of the baby’s sex, their perception the baby’s femininity and masculinity, and whether these biases interacted with their perception of the level of discomfort expressed by the cry. Results: We show that low-pitched cries are more likely to be attributed to boys and high-pitched cries to girls, despite the absence of sex differences in pitch. Moreover, low-pitched boys are perceived as more masculine and high-pitched girls are perceived as more feminine. Finally, adult men rate relatively low-pitched cries as expressing more discomfort when presented as belonging to boys than to girls. Conclusion: Such biases in caregivers’ responses to babies’ cries may have implications on children’s immediate welfare and on the development of their gender identity

    Rapid Chromosome Evolution in Recently Formed Polyploids in Tragopogon (Asteraceae)

    Get PDF
    Polyploidy, frequently termed "whole genome duplication", is a major force in the evolution of many eukaryotes. Indeed, most angiosperm species have undergone at least one round of polyploidy in their evolutionary history. Despite enormous progress in our understanding of many aspects of polyploidy, we essentially have no information about the role of chromosome divergence in the establishment of young polyploid populations. Here we investigate synthetic lines and natural populations of two recently and recurrently formed allotetraploids Tragopogon mirus and T. miscellus (formed within the past 80 years) to assess the role of aberrant meiosis in generating chromosomal/genomic diversity. That diversity is likely important in the formation, establishment and survival of polyploid populations and species.Applications of fluorescence in situ hybridisation (FISH) to natural populations of T. mirus and T. miscellus suggest that chromosomal rearrangements and other chromosomal changes are common in both allotetraploids. We detected extensive chromosomal polymorphism between individuals and populations, including (i) plants monosomic and trisomic for particular chromosomes (perhaps indicating compensatory trisomy), (ii) intergenomic translocations and (iii) variable sizes and expression patterns of individual ribosomal DNA (rDNA) loci. We even observed karyotypic variation among sibling plants. Significantly, translocations, chromosome loss, and meiotic irregularities, including quadrivalent formation, were observed in synthetic (S(0) and S(1) generations) polyploid lines. Our results not only provide a mechanism for chromosomal variation in natural populations, but also indicate that chromosomal changes occur rapidly following polyploidisation.These data shed new light on previous analyses of genome and transcriptome structures in de novo and establishing polyploid species. Crucially our results highlight the necessity of studying karyotypes in young (<150 years old) polyploid species and synthetic polyploids that resemble natural species. The data also provide insight into the mechanisms that perturb inheritance patterns of genetic markers in synthetic polyploids and populations of young natural polyploid species

    Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex

    Get PDF
    Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.UE FWF; P22260UE: Y66
    corecore