181 research outputs found
Short-term plasticity as cause-effect hypothesis testing in distal reward learning
Asynchrony, overlaps and delays in sensory-motor signals introduce ambiguity
as to which stimuli, actions, and rewards are causally related. Only the
repetition of reward episodes helps distinguish true cause-effect relationships
from coincidental occurrences. In the model proposed here, a novel plasticity
rule employs short and long-term changes to evaluate hypotheses on cause-effect
relationships. Transient weights represent hypotheses that are consolidated in
long-term memory only when they consistently predict or cause future rewards.
The main objective of the model is to preserve existing network topologies when
learning with ambiguous information flows. Learning is also improved by biasing
the exploration of the stimulus-response space towards actions that in the past
occurred before rewards. The model indicates under which conditions beliefs can
be consolidated in long-term memory, it suggests a solution to the
plasticity-stability dilemma, and proposes an interpretation of the role of
short-term plasticity.Comment: Biological Cybernetics, September 201
Evolving Neuromodulatory Topologies for Reinforcement Learning-like Problems
Environments with varying reward contingencies constitute a challenge to many living creatures. In such conditions, animals capable of adaptation and learning derive an advantage. Recent studies suggest that neuromodulatory dynamics are a key factor in regulating learning and adaptivity when reward conditions are subject to variability. In biological neural networks, specific circuits generate modulatory signals, particularly in situations that involve learning cues such as a reward or novel stimuli. Modulatory signals are then broadcast and applied onto target synapses to activate or regulate synaptic plasticity. Artificial neural models that include modulatory dynamics could prove their potential in uncertain environments when online learning is required. However, a topology that synthesises and delivers modulatory signals to target synapses must be devised. So far, only handcrafted architectures of such kind have been attempted. Here we show that modulatory topologies can be designed autonomously by artificial evolution and achieve superior learning capabilities than traditional fixed-weight or Hebbian networks. In our experiments, we show that simulated bees autonomously evolved a modulatory network to maximise the reward in a reinforcement learning-like environment
Distributed task rescheduling with time constraints for the optimization of total task allocations in a multirobot system
This paper considers the problem of maximizing the number of task allocations in a distributed multirobot system under strict time constraints, where other optimization objectives need also be considered. It builds upon existing distributed task allocation algorithms, extending them with a novel method for maximizing the number of task assignments. The fundamental idea is that a task assignment to a robot has a high cost if its reassignment to another robot creates a feasible time slot for unallocated tasks. Multiple reassignments among networked robots may be required to create a feasible time slot and an upper limit to this number of reassignments can be adjusted according to performance requirements. A simulated rescue scenario with task deadlines and fuel limits is used to demonstrate the performance of the proposed method compared with existing methods, the consensus-based bundle algorithm and the performance impact (PI) algorithm. Starting from existing (PI-generated) solutions, results show up to a 20% increase in task allocations using the proposed method.EPSRC Grant EP/J011525/
Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks
Biological plastic neural networks are systems of extraordinary computational
capabilities shaped by evolution, development, and lifetime learning. The
interplay of these elements leads to the emergence of adaptive behavior and
intelligence. Inspired by such intricate natural phenomena, Evolved Plastic
Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed
plastic neural networks with a large variety of dynamics, architectures, and
plasticity rules: these artificial systems are composed of inputs, outputs, and
plastic components that change in response to experiences in an environment.
These systems may autonomously discover novel adaptive algorithms, and lead to
hypotheses on the emergence of biological adaptation. EPANNs have seen
considerable progress over the last two decades. Current scientific and
technological advances in artificial neural networks are now setting the
conditions for radically new approaches and results. In particular, the
limitations of hand-designed networks could be overcome by more flexible and
innovative solutions. This paper brings together a variety of inspiring ideas
that define the field of EPANNs. The main methods and results are reviewed.
Finally, new opportunities and developments are presented
Neural plasticity and minimal topologies for reward-based learning
Artificial Neural Networks for online learning problems are often implemented with synaptic plasticity to achieve adaptive behaviour. A common problem is that the overall learning dynamics are emergent properties strongly dependent on the correct combination of neural architectures, plasticity rules and environmental features. Which complexity in architectures and learning rules is required to match specific control and learning problems is not clear. Here a set of homosynaptic plasticity rules is applied to topologically unconstrained neural controllers while operating and evolving in dynamic reward-based scenarios. Performances are monitored on simulations of bee foraging problems and T-maze navigation. Varying reward locations compel the neural controllers to adapt their foraging strategies over time, fostering online reward-based learning. In contrast to previous studies, the results here indicate that reward-based learning in complex dynamic scenarios can be achieved with basic plasticity rules and minimal topologies. © 2008 IEEE
Short and long term plasticity as cause-effect hypothesis testing in robotic ambiguous scenarios
Short and long term plasticity as cause-effect hypothesis testing in robotic ambiguous scenario
Movement primitives as a robotic tool to interpret trajectories through learning-by-doing
Articulated movements are fundamental in many human and robotic tasks. While humans can learn and generalise arbitrarily long sequences of movements, and particularly can optimise them to fit the constraints and features of their body, robots are often programmed to execute point-to-point precise but fixed patterns. This study proposes a new approach to interpreting and reproducing articulated and complex trajectories as a set of known robot-based primitives. Instead of achieving accurate reproductions, the proposed approach aims at interpreting data in an agent-centred fashion, according to an agent's primitive movements. The method improves the accuracy of a reproduction with an incremental process that seeks first a rough approximation by capturing the most essential features of a demonstrated trajectory. Observing the discrepancy between the demonstrated and reproduced trajectories, the process then proceeds with incremental decompositions and new searches in sub-optimal parts of the trajectory. The aim is to achieve an agent-centred interpretation and progressive learning that fits in the first place the robots' capability, as opposed to a data-centred decomposition analysis. Tests on both geometric and human generated trajectories reveal that the use of own primitives results in remarkable robustness and generalisation properties of the method. In particular, because trajectories are understood and abstracted by means of agent-optimised primitives, the method has two main features: 1) Reproduced trajectories are general and represent an abstraction of the data. 2) The algorithm is capable of reconstructing highly noisy or corrupted data without pre-processing thanks to an implicit and emergent noise suppression and feature detection. This study suggests a novel bio-inspired approach to interpreting, learning and reproducing articulated movements and trajectories. Possible applications include drawing, writing, movement generation, object manipulation, and other tasks where the performance requires human-like interpretation and generalisation capabilities
Online representation learning with single and multi-layer Hebbian networks for image classification
Unsupervised learning permits the development of algorithms that are able to adapt to a variety of different datasets using the same underlying rules thanks to the autonomous discovery of discriminating features during training. Recently, a new class of Hebbian-like and local unsupervised learning rules for neural networks have been developed that minimise a similarity matching costfunction. These have been shown to perform sparse representation learning. This
study tests the effectiveness of one such learning rule for learning features from
images. The rule implemented is derived from a nonnegative classical multidimensional
scaling cost-function, and is applied to both single and multi-layer architectures. The features learned by the algorithm are then used as input to an SVM to test their effectiveness in classification on the established CIFAR-10 image dataset. The algorithm performs well in comparison to other unsupervised learning algorithms and multi-layer networks, thus suggesting its validity in the design of a new class of compact, online learning networks
Editorial: Neural plasticity for rich and uncertain robotic information streams
Editorial: Neural plasticity for rich and uncertain robotic information stream
- …
