371 research outputs found

    Wannier representation of Z_2 topological insulators

    Full text link
    We consider the problem of constructing Wannier functions for Z_2 topological insulators in two dimensions. It is well known that there is a topological obstruction to the construction of Wannier functions for Chern insulators, but it has been unclear whether this is also true for the Z_2 case. We consider the Kane-Mele tight-binding model, which exhibits both normal (Z_2-even) and topological (Z_2-odd) phases as a function of the model parameters. In the Z_2-even phase, the usual projection-based scheme can be used to build the Wannier representation. In the Z_2-odd phase, we do find a topological obstruction, but only if one insists on choosing a gauge that respects the time-reversal symmetry, corresponding to Wannier functions that come in time-reversal pairs. If instead we are willing to violate this gauge condition, a Wannier representation becomes possible. We present an explicit construction of Wannier functions for the Z_2-odd phase of the Kane-Mele model via a modified projection scheme followed by maximal localization, and confirm that these Wannier functions correctly represent the electric polarization and other electronic properties of the insulator

    Braiding Majorana corner modes in a second-order topological superconductor

    Full text link
    We propose the concept of a device based on a square-shaped sample of a two-dimensional second-order topological helical superconductor which hosts two zero-dimensional Majorana quasiparticles at the corners. The two zero-energy modes rely on particle-hole symmetry (PHS) and their spacial position can be shifted by rotating an in-plane magnetic field and tuning proximity-induced spin-singlet pairing. We consider an adiabatic cycle performed on the degenerate ground-state manifold and show that it realizes the braiding of the two modes whereby they accumulate a non-trivial statistical phase π\pi within one cycle. Alongside with the PHS-ensured operator algebra, the fractional statistics confirms the Majorana nature of the zero-energy excitations. A schematic design for a possible experimental implementation of such a device is presented, which could be a step towards realizing non-Abelian braiding.Comment: A different physical system is considered in this version (topological superconductor), however, the topological and symmetry features are closely related to those of the two-layer topological insulator of version 2 (arXiv:1904.07822v2). A more accurate distinction is made between the fractional statistics of the Majorana corner states and their potential non-Abelian propertie

    Smooth gauge and Wannier functions for topological band structures in arbitrary dimensions

    Full text link
    The construction of exponentially localized Wannier functions for a set of bands requires a choice of Bloch-like functions that span the space of the bands in question, and are smooth and periodic functions of k in the entire Brillouin zone. For bands with nontrivial topology, such smooth Bloch functions can only be chosen such that they do not respect the symmetries that protect the topology. This symmetry breaking is a necessary, but not sufficient condition for smoothness, and, in general, finding smooth Bloch functions for topological bands is a complicated task. We present a generic technique for finding smooth Bloch functions and constructing exponentially localized Wannier functions in the presence of nontrivial topology, given that the net Chern number of the bands in question vanishes. The technique is verified against known results in the Kane-Mele model. It is then applied to the topological insulator Bi2Se3, where the topological state is protected by two symmetries: time reversal and inversion. The resultant exponentially localized Wannier functions break both these symmetries. Finally, we illustrate how the calculation of the Chern-Simons orbital magnetoelectric response is facilitated by the proposed smooth gauge construction.Comment: 13 pages, 10 figure

    Type-II Weyl Semimetals

    Full text link
    Fermions in nature come in several types: Dirac, Majorana and Weyl are theoretically thought to form a complete list. Even though Majorana and Weyl fermions have for decades remained experimentally elusive, condensed matter has recently emerged as fertile ground for their discovery as low energy excitations of realistic materials. Here we show the existence of yet another particle - a new type of Weyl fermion - that emerges at the boundary between electron and hole pockets in a new type of Weyl semimetal phase of matter. This fermion was missed by Weyl in 1929 due to its breaking of the stringent Lorentz symmetry of high-energy physics. Lorentz invariance however is not present in condensed matter physics, and we predict that an established material, WTe2_2, is an example of this novel type of topological semimetal hosting the new particle as a low energy excitation around a type-2 Weyl node. This node, although still a protected crossing, has an open, finite-density of states Fermi surface, likely resulting in a plethora physical properties very different from those of standard point-like Fermi surface Weyl points
    corecore