2,142 research outputs found
The coincidence problem in gravity models
To explore possibilities of avoiding coincidence problem in gravity we
consider models in Einstein conformal frame which are equivalent to Einstein
gravity with a minimally coupled scalar field. As the conformal factor
determines the coupling term and hence the interaction between matter and dark
energy, the function can in principle be determined by choosing an
appropriate function for the deceleration parameter only. Possible behavior of
to avoid coincidence problem are investigated in two such cases.Comment: 19 pages, 9 figures, Accepted for publication in General Relativity
and Gravitation. arXiv admin note: substantial text overlap with
arXiv:0807.1640 by other author
Improving dialysis adherence for high risk patients using automated messaging: Proof of concept
AbstractComorbidities and socioeconomic barriers often limit patient adherence and self-management with hemodialysis. Missed sessions, often associated with communication barriers, can result in emergency dialysis and avoidable hospitalizations. This proof of concept study explored using a novel digital-messaging platform, EpxDialysis, to improve patient-to-dialysis center communication via widely available text messaging and telephone technology. A randomized controlled trial was conducted through Washington University-affiliated hemodialysis centers involving ESRD patients with poor attendance, defined as missing 2–6 sessions over the preceding 12 weeks. A cross-over study design evaluated appointment adherence between intervention and control groups. Comparing nonadherence rates eight weeks prior to enrollment, median appointment adherence after using the system increased by 75%, and median number of unintended hospitalization days fell by 31%. A conservative cost-benefit analysis of EpxDialysis demonstrates a 1:36 savings ratio from appointment adherence. EpxDialysis is a low-risk, cost-effective, intervention for increasing hemodialysis adherence in high-risk patients, especially at centers caring for vulnerable and low-income patients.</jats:p
Low-Complexity Detection/Equalization in Large-Dimension MIMO-ISI Channels Using Graphical Models
In this paper, we deal with low-complexity near-optimal
detection/equalization in large-dimension multiple-input multiple-output
inter-symbol interference (MIMO-ISI) channels using message passing on
graphical models. A key contribution in the paper is the demonstration that
near-optimal performance in MIMO-ISI channels with large dimensions can be
achieved at low complexities through simple yet effective
simplifications/approximations, although the graphical models that represent
MIMO-ISI channels are fully/densely connected (loopy graphs). These include 1)
use of Markov Random Field (MRF) based graphical model with pairwise
interaction, in conjunction with {\em message/belief damping}, and 2) use of
Factor Graph (FG) based graphical model with {\em Gaussian approximation of
interference} (GAI). The per-symbol complexities are and
for the MRF and the FG with GAI approaches, respectively, where
and denote the number of channel uses per frame, and number of transmit
antennas, respectively. These low-complexities are quite attractive for large
dimensions, i.e., for large . From a performance perspective, these
algorithms are even more interesting in large-dimensions since they achieve
increasingly closer to optimum detection performance for increasing .
Also, we show that these message passing algorithms can be used in an iterative
manner with local neighborhood search algorithms to improve the
reliability/performance of -QAM symbol detection
Condensation of Excitons in Cu2O at Ultracold Temperatures: Experiment and Theory
We present experiments on the luminescence of excitons confined in a
potential trap at milli-Kelvin bath temperatures under cw-excitation. They
reveal several distinct features like a kink in the dependence of the total
integrated luminescence intensity on excitation laser power and a bimodal
distribution of the spatially resolved luminescence. Furthermore, we discuss
the present state of the theoretical description of Bose-Einstein condensation
of excitons with respect to signatures of a condensate in the luminescence. The
comparison of the experimental data with theoretical results with respect to
the spatially resolved as well as the integrated luminescence intensity shows
the necessity of taking into account a Bose-Einstein condensed excitonic phase
in order to understand the behaviour of the trapped excitons.Comment: 41 pages, 23 figure
Numerical simulation of exciton dynamics in Cu2O at ultra low temperatures within a potential trap
We have studied theoretically the relaxation behaviour of excitons in cuprous
oxide (Cu2O) at ultra low temperatures when excitons are confined within a
potential trap by solving numerically the Boltzmann equation. As relaxation
processes, we have included in this paper deformation potential phonon
scattering, radiative and non-radiative decay and Auger decay. The relaxation
kinetics has been analysed for temperatures in the range between 0.3K and 5K.
Under the action of deformation potential phonon scattering only, we find for
temperatures above 0.5K that the excitons reach local equilibrium with the
lattice i.e. that the effective local temperature is coming down to bath
temperature, while below 0.5K a non-thermal energy distribution remains.
Interestingly, for all temperatures the global spatial distribution of excitons
does not reach the equilibrium distribution, but stays at a much higher
effective temperature. If we include further a finite lifetime of the excitons
and the two-particle Auger decay, we find that both the local and the global
effective temperature are not coming down to bath temperature. In the first
case we find a Bose-Einstein condensation (BEC) to occur for all temperatures
in the investigated range. Comparing our results with the thermal equilibrium
case, we find that BEC occurs for a significantly higher number of excitons in
the trap. This effect could be related to the higher global temperature, which
requires an increased number of excitons within the trap to observe the BEC. In
case of Auger decay, we do not find at any temperature a BEC due to the heating
of the exciton gas
Modeling cancer metabolism on a genome scale
Cancer cells have fundamentally altered cellular metabolism that is associated with their tumorigenicity and malignancy. In addition to the widely studied Warburg effect, several new key metabolic alterations in cancer have been established over the last decade, leading to the recognition that altered tumor metabolism is one of the hallmarks of cancer. Deciphering the full scope and functional implications of the dysregulated metabolism in cancer requires both the advancement of a variety of omics measurements and the advancement of computational approaches for the analysis and contextualization of the accumulated data. Encouragingly, while the metabolic network is highly interconnected and complex, it is at the same time probably the best characterized cellular network. Following, this review discusses the challenges that genome‐scale modeling of cancer metabolism has been facing. We survey several recent studies demonstrating the first strides that have been done, testifying to the value of this approach in portraying a network‐level view of the cancer metabolism and in identifying novel drug targets and biomarkers. Finally, we outline a few new steps that may further advance this field
- …
