597 research outputs found
On the Spectrum of Large Random Hermitian Finite-Band Matrices
The open problem of calculating the limiting spectrum (or its Shannon
transform) of increasingly large random Hermitian finite-band matrices is
described. In general, these matrices include a finite number of non-zero
diagonals around their main diagonal regardless of their size. Two different
communication setups which may be modeled using such matrices are presented: a
simple cellular uplink channel, and a time varying inter-symbol interference
channel. Selected recent information-theoretic works dealing directly with such
channels are reviewed. Finally, several characteristics of the still unknown
limiting spectrum of such matrices are listed, and some reflections are touched
upon.Comment: Presented in the "open problems" session of the 2008 Information
Theory and Applications (ITA) workshop, UCS
Opportunistic Relaying in Wireless Networks
Relay networks having source-to-destination pairs and half-duplex
relays, all operating in the same frequency band in the presence of block
fading, are analyzed. This setup has attracted significant attention and
several relaying protocols have been reported in the literature. However, most
of the proposed solutions require either centrally coordinated scheduling or
detailed channel state information (CSI) at the transmitter side. Here, an
opportunistic relaying scheme is proposed, which alleviates these limitations.
The scheme entails a two-hop communication protocol, in which sources
communicate with destinations only through half-duplex relays. The key idea is
to schedule at each hop only a subset of nodes that can benefit from
\emph{multiuser diversity}. To select the source and destination nodes for each
hop, it requires only CSI at receivers (relays for the first hop, and
destination nodes for the second hop) and an integer-value CSI feedback to the
transmitters. For the case when is large and is fixed, it is shown that
the proposed scheme achieves a system throughput of bits/s/Hz. In
contrast, the information-theoretic upper bound of bits/s/Hz
is achievable only with more demanding CSI assumptions and cooperation between
the relays. Furthermore, it is shown that, under the condition that the product
of block duration and system bandwidth scales faster than , the
achievable throughput of the proposed scheme scales as .
Notably, this is proven to be the optimal throughput scaling even if
centralized scheduling is allowed, thus proving the optimality of the proposed
scheme in the scaling law sense.Comment: 17 pages, 8 figures, To appear in IEEE Transactions on Information
Theor
Throughput Scaling of Wireless Networks With Random Connections
This work studies the throughput scaling laws of ad hoc wireless networks in
the limit of a large number of nodes. A random connections model is assumed in
which the channel connections between the nodes are drawn independently from a
common distribution. Transmitting nodes are subject to an on-off strategy, and
receiving nodes employ conventional single-user decoding. The following results
are proven:
1) For a class of connection models with finite mean and variance, the
throughput scaling is upper-bounded by for single-hop schemes, and
for two-hop (and multihop) schemes.
2) The throughput scaling is achievable for a specific
connection model by a two-hop opportunistic relaying scheme, which employs
full, but only local channel state information (CSI) at the receivers, and
partial CSI at the transmitters.
3) By relaxing the constraints of finite mean and variance of the connection
model, linear throughput scaling is achievable with Pareto-type
fading models.Comment: 13 pages, 4 figures, To appear in IEEE Transactions on Information
Theor
Optically pumped GaAs surface laser with corrugation feedback
A GaAs distributed-feedback laser was fabricated and pumped optically. A narrow stimulated spectrum was obtained around 0.83 µ with threshold pumping power of ~2 × 10^5 W/cm^2
Cooperative Multi-Cell Networks: Impact of Limited-Capacity Backhaul and Inter-Users Links
Cooperative technology is expected to have a great impact on the performance
of cellular or, more generally, infrastructure networks. Both multicell
processing (cooperation among base stations) and relaying (cooperation at the
user level) are currently being investigated. In this presentation, recent
results regarding the performance of multicell processing and user cooperation
under the assumption of limited-capacity interbase station and inter-user
links, respectively, are reviewed. The survey focuses on related results
derived for non-fading uplink and downlink channels of simple cellular system
models. The analytical treatment, facilitated by these simple setups, enhances
the insight into the limitations imposed by limited-capacity constraints on the
gains achievable by cooperative techniques
The impact of broadband in schools
The report reviews evidence for the impact of broadband in English schools, exploring; Variations in provision in level of broadband connectivity; Links between the level of broadband activity and nationally accessible performance data; Aspects of broadband connectivity and the school environment that contribute to better outcomes for pupils and teachers; Academic and motivational benefits associated with educational uses of this technology
Spatial Modulation Microscopy for Real-Time Imaging of Plasmonic Nanoparticles and Cells
Spatial modulation microscopy is a technique originally developed for
quantitative spectroscopy of individual nano-objects. Here, a parallel
implementation of the spatial modulation microscopy technique is demonstrated
based on a line detector capable of demodulation at kHz frequencies. The
capabilities of the imaging system are shown using an array of plasmonic
nanoantennas and dendritic cells incubated with gold nanoparticles.Comment: 3 pages, 4 figure
Cascading the use of Web 2.0 technology in secondary schools in the United Kingdom: identifying the barriers beyond pre-service training
This paper reports on research that took place at Nottingham Trent University and Sheffield Hallam University, United Kingdom, over two years. The research focuses on the use of Web 2.0 technology, specifically web logs, with pre-service teachers, both during their university programme and the first year of teaching as full-time newly qualified teachers (NQTs). The purpose of this research was to add a developing body of knowledge by identifying whether technology used by pre-service teachers during their training course can be cascaded into their practice once qualified. Key findings identify a number of enablers and barriers to cascading technology in the classroom; these include curriculum time, pupil skills and support. The research concludes that early professional support and development should be on-going and assumptions about new teachers as champions of cascading innovative use of Web 2 technologies into their practice as NQTs may be over optimisti
- …
