122,417 research outputs found
Wave packet transmission of Bloch electron manipulated by magnetic field
We study the phenomenon of wave packet revivals of Bloch electrons and
explore how to control them by a magnetic field for quantum information
transfer. It is showed that the single electron system can be modulated into a
linear dispersion regime by the "quantized" flux and then an electronic wave
packet with the components localized in this regime can be transferred without
spreading. This feature can be utilized to perform the high-fidelity transfer
of quantum information encoded in the polarization of the spin. Beyond the
linear approximation, the re-localization and self-interference occur as the
novel phenomena of quantum coherence.Comment: 6 pages, 5 figures, new content adde
A ParaBoost Stereoscopic Image Quality Assessment (PBSIQA) System
The problem of stereoscopic image quality assessment, which finds
applications in 3D visual content delivery such as 3DTV, is investigated in
this work. Specifically, we propose a new ParaBoost (parallel-boosting)
stereoscopic image quality assessment (PBSIQA) system. The system consists of
two stages. In the first stage, various distortions are classified into a few
types, and individual quality scorers targeting at a specific distortion type
are developed. These scorers offer complementary performance in face of a
database consisting of heterogeneous distortion types. In the second stage,
scores from multiple quality scorers are fused to achieve the best overall
performance, where the fuser is designed based on the parallel boosting idea
borrowed from machine learning. Extensive experimental results are conducted to
compare the performance of the proposed PBSIQA system with those of existing
stereo image quality assessment (SIQA) metrics. The developed quality metric
can serve as an objective function to optimize the performance of a 3D content
delivery system
On the performance of densified DVB-H single frequency networks
The broadcasting of TV programmes to mobile phones can be enabled by the newly developed technology called Digital Video Broadcasting-Handheld (DVB-H). Because of the scarcity and cost of frequency resources, frequency reuse needs to be considered when rolling out DVB-H networks. By simulcasting the same content from several transmitters, a Single Frequency Network (SFN) can provide good coverage and good frequency efficiency. In this paper, the performance of densified DVB-H SFN networks is analysed in terms of the coverage probability under different coverage requirements with and without frequency reuse. A dichotomy searching approach is used to determine the optimal cell radius for a cell in a densified DVB-H SFN for a given network topology. Based on the optimal cell radius map and a SFN gain map generated from the simulation results, guidelines are proposed on how to avoid the potential pitfalls in configuring the parameters of a densified DVB-H SFN network and optimise its parameters in terms of minimising the cost of the network for a range of predefined network parameters
Quantum state swapping via qubit network with Hubbard interaction
We study the quantum state transfer (QST) in a class of qubit network with
on-site interaction, which is described by the generalized Hubbard model with
engineered couplings. It is proved that the system of two electrons with
opposite spins in this quantum network of sites can be rigorously reduced
into one dimensional engineered single Bloch electron models with central
potential barrier. With this observation we find that such system can perform a
perfect QST, the quantum swapping between two distant electrons with opposite
spins. Numerical results show such QST and the resonant-tunnelling for the
optimal on-site interaction strengths.Comment: 4 pages, 3 figure
Chiral plasmons without magnetic field
Plasmons, the collective oscillations of interacting electrons, possess
emergent properties that dramatically alter the optical response of metals. We
predict the existence of a new class of plasmons -- chiral Berry plasmons
(CBPs) -- for a wide range of two-dimensional metallic systems including gapped
Dirac materials. As we show, in these materials the interplay between Berry
curvature and electron-electron interactions yields chiral plasmonic modes at
zero magnetic field. The CBP modes are confined to system boundaries, even in
the absence of topological edge states, with chirality manifested in split
energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP
phenomenology and propose setups for realizing them, including in anomalous
Hall metals and optically-pumped 2D Dirac materials. Realization of CBPs will
offer a new paradigm for magnetic field-free, sub-wavelength optical
non-reciprocity, in the mid IR-THz range, with tunable splittings as large as
tens of THz, as well as sensitive all-optical diagnostics of topological bands.Comment: 10 pgs, 3 fg
Secure Key Distribution by Swapping Quantum Entanglement
We report two key distribution schemes achieved by swapping quantum
entanglement. Using two Bell states, two bits of secret key can be shared
between two distant parties that play symmetric and equal roles. We also
address eavesdropping attacks against the schemes.Comment: 4 pages, 2 figures, 3 tables. The revised version will appear in
Phys. Rev.
Plasmon geometric phase and plasmon Hall shift
The collective plasmonic modes of a metal comprise a pattern of charge
density and tightly-bound electric fields that oscillate in lock-step to yield
enhanced light-matter interaction. Here we show that metals with non-zero Hall
conductivity host plasmons with a fine internal structure: they are
characterized by a current density configuration that sharply departs from that
of ordinary zero Hall conductivity metals. This non-trivial internal structure
dramatically enriches the dynamics of plasmon propagation, enabling plasmon
wavepackets to acquire geometric phases as they scatter. Strikingly, at
boundaries these phases accumulate allowing plasmon waves that reflect off to
experience a non-reciprocal parallel shift along the boundary displacing the
incident and reflected plasmon trajectories. This plasmon Hall shift, tunable
by Hall conductivity as well as plasmon wavelength, displays the chirality of
the plasmon's current distribution and can be probed by near-field photonics
techniques. Anomalous plasmon dynamics provide a real-space window into the
inner structure of plasmon bands, as well as new means for directing plasmonic
beams
- …
