23,914 research outputs found
Subsystem eigenstate thermalization hypothesis for entanglement entropy in CFT
We investigate a weak version of subsystem eigenstate thermalization
hypothesis (ETH) for a two-dimensional large central charge conformal field
theory by comparing the local equivalence of high energy state and thermal
state of canonical ensemble. We evaluate the single-interval R\'enyi entropy
and entanglement entropy for a heavy primary state in short interval expansion.
We verify the results of R\'enyi entropy by two different replica methods. We
find nontrivial results at the eighth order of short interval expansion, which
include an infinite number of higher order terms in the large central charge
expansion. We then evaluate the relative entropy of the reduced density
matrices to measure the difference between the heavy primary state and thermal
state of canonical ensemble, and find that the aforementioned nontrivial eighth
order results make the relative entropy unsuppressed in the large central
charge limit. By using Pinsker's and Fannes-Audenaert inequalities, we can
exploit the results of relative entropy to yield the lower and upper bounds on
trace distance of the excited-state and thermal-state reduced density matrices.
Our results are consistent with subsystem weak ETH, which requires the above
trace distance is of power-law suppression by the large central charge.
However, we are unable to pin down the exponent of power-law suppression. As a
byproduct we also calculate the relative entropy to measure the difference
between the reduced density matrices of two different heavy primary states.Comment: 28 pages, 4 figures;v2 change author list;v3 related subtleties about
weak ETH clarified; v4 minor correction to match JHEP versio
Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis
We calculate various quantities that characterize the dissimilarity of
reduced density matrices for a short interval of length in a
two-dimensional (2D) large central charge conformal field theory (CFT). These
quantities include the R\'enyi entropy, entanglement entropy, relative entropy,
Jensen-Shannon divergence, as well as the Schatten 2-norm and 4-norm. We adopt
the method of operator product expansion of twist operators, and calculate the
short interval expansion of these quantities up to order of for the
contributions from the vacuum conformal family. The formal forms of these
dissimilarity measures and the derived Fisher information metric from
contributions of general operators are also given. As an application of the
results, we use these dissimilarity measures to compare the excited and thermal
states, and examine the eigenstate thermalization hypothesis (ETH) by showing
how they behave in high temperature limit. This would help to understand how
ETH in 2D CFT can be defined more precisely. We discuss the possibility that
all the dissimilarity measures considered here vanish when comparing the
reduced density matrices of an excited state and a generalized Gibbs ensemble
thermal state. We also discuss ETH for a microcanonical ensemble thermal state
in a 2D large central charge CFT, and find that it is approximately satisfied
for a small subsystem and violated for a large subsystem.Comment: V1, 34 pages, 5 figures, see collection of complete results in the
attached Mathematica notebook; V2, 38 pages, 5 figures, published versio
Validation of the chinese version of the oral health impact profile for TMDs (OHIP- TMDs-C)
Objectives: The aim of this study was to evaluate the reliability and validity of the the Chinese version of the Oral
Health Impact Profile for TMDs (OHIP-TMDs-C).
Study Design: The OHIP-TMDs was initially translated and cross-culturally adapted to Chinese following international guidelines; then subsequently validated for the psychometric characteristics of reliability and validity. In
total, 156 participants with temporomandibular disorders (TMDs) were recruited to complete the questionnaire.
The reliability of the OHIP-TMDs-C was evaluated using internal consistency and test-retest methods. The validity of the OHIP-TMDs-C was analysed by construct validity and convergent validity. Construct validity was determined based on factor analysis, and convergent validity by analyzing the correlation between OHIP-TMDs-C
subscale scores and the global rating of oral health question.
Results: Cronbach’s alpha value (internal reliability) for the total OHIP-TMDs-C score was 0.917 and the intraclass correlation coefficient (ICC) value (test–retest reliability) was 0.899. Construct validity was determined by
factor analysis, extracting five factors, accounting for 78.6% of the variance. All items had factor loadings above
0.40. In terms of convergent validity, the OHIP-TMDs-C subscale was significant correlated to the global oral
health rating.
Conclusions: The results suggest that the OHIP-TMDs-C has good reliability and validity and thus may be used
as a valuable instrument for patients with TMDs in China
The two-loop supersymmetric corrections to lepton anomalous magnetic and electric dipole moments
Using the effective Lagrangian method, we analyze the electroweak corrections
to the anomalous dipole moments of lepton from some special two-loop
topological diagrams which are composed of neutralino (chargino) - slepton
(sneutrino) in the minimal supersymmetric extension of the standard model
(MSSM). Considering the translational invariance of the inner loop momenta and
the electromagnetic gauge invariance, we get all dimension 6 operators and
derive their coefficients. After applying equations of motion to the external
leptons, the anomalous dipole moments of lepton are obtained. The numerical
results imply that there is a parameter space where the two-loop supersymmetric
corrections to the muon anomalous dipole moments may be significant.Comment: Revtex, 45 pages, including 8 fig
Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining
We report on fabrication of on-chip calcium fluoride (CaF2) microdisk
resonators using water-assisted femtosecond laser micromachining. Focused ion
beam (FIB) milling is used to create ultra-smooth sidewalls. The quality
(Q)-factors of the fabricated microresonators are measured to be 4.2x10^4 at
wavelengths near 1550 nm. The Q factor is mainly limited by the scattering from
the bottom surface of the disk whose roughness remains high due to the
femtosecond laser micromachining process. This technique facilitates formation
of on-chip microresonators on various kinds of bulk crystalline materials,
which can benefit a wide range of applications such as nonlinear optics,
quantum optics, and chip-level integration of photonic devices.Comment: 7 pages, 3 figure
- …
