109 research outputs found
Role of COX-2/mPGES-1/Prostaglandin E2 Cascade in Kidney Injury
COX-2/mPGES-1/PGE2 cascade plays critical roles in modulating many physiological and pathological actions in different organs. In the kidney, this cascade is of high importance in regulating fluid metabolism, blood pressure, and renal hemodynamics. Under some disease conditions, this cascade displays various actions in response to the different pathological insults. In the present review, the roles of this cascade in the pathogenesis of kidney injuries including diabetic and nondiabetic kidney diseases and acute kidney injuries were introduced and discussed. The new insights from this review not only increase the understanding of the pathological role of the COX-2/mPGES-1/PGE2 pathway in kidney injuries, but also shed new light on the innovation of the strategies for the treatment of kidney diseases
Rotenone Remarkably Attenuates Oxidative Stress, Inflammation, and Fibrosis in Chronic Obstructive Uropathy
Mitochondrial abnormality has been shown in many kidney disease models. However, its role in the pathogenesis of chronic kidney diseases (CKDs) is still uncertain. In present study, a mitochondrial complex I inhibitor rotenone was applied to the mice subjected to unilateral ureteral obstruction (UUO). Following 7-days rotenone treatment, a remarkable attenuation of tubular injury was detected by PAS staining. In line with the improvement of kidney morphology, rotenone remarkably blunted fibrotic response as shown by downregulation of fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), collagen I, collagen III, and α-SMA, paralleled with a substantial decrease of TGF-β1. Meanwhile, the oxidative stress markers thiobarbituric acid-reactive substances (TBARS) and heme oxygenase 1 (HO-1) and inflammatory markers TNF-α, IL-1β, and ICAM-1 were markedly decreased. More importantly, the reduction of mitochondrial DNA copy number and mitochondrial NADH dehydrogenase subunit 1 (mtND1) expression in obstructed kidneys was moderately but significantly restored by rotenone, suggesting an amelioration of mitochondrial injury. Collectively, mitochondrial complex I inhibitor rotenone protected kidneys against obstructive injury possibly via inhibition of mitochondrial oxidative stress, inflammation, and fibrosis, suggesting an important role of mitochondrial dysfunction in the pathogenesis of obstructive kidney disease
Perioperative dynamics and significance of amino acid profiles in patients with cancer
BACKGROUND: Metabolome analysis including amino acid profile is under investigation as an approach in cancer screening. The present study aims to analyze plasma free amino acid (PFAA) profiles in cancer patients and investigate their potential as biomarkers of malignancy. METHODS: Plasma samples from 56 gastric cancer patients, 28 breast cancer patients, 33 thyroid cancer patients, and 137 age-matched healthy controls were collected in the study. PFAA levels were measured and their perioperative alterations were analyzed. Biological effects of ten cancer-related amino acids were further validated in gastric and breast cancer cells. RESULTS: We found that PFAA profiles of cancer patients differed significantly from those of healthy controls. Decreased concentrations of PFAAs were associated with lymph node metastases in gastric cancer. Levels of PFAAs such as aspartate and alanine increased after tumor resection. PFAA levels correlated with clinical tumor markers in gastric cancer patients and pathological immunohistochemistry markers in breast cancer patients. Specifically, alanine, arginine, aspartate and cysteine had proliferative effects on breast cancer cells. Proliferation of gastric cancer cells was promoted by cysteine, but inhibited by alanine and glutamic acid. Furthermore, alanine treatment decreased total and stable fraction of gastric cancer cells, and alanine and glutamic acid induced apoptosis of gastric cancer cells. CONCLUSIONS: PFAA patterns in cancer patients are altered perioperatively. Tumor-related amino acids identified by dynamic study of PFAA patterns may have the potential to be developed as novel biomarkers for diagnosis and prognosis of cancer patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0408-1) contains supplementary material, which is available to authorized users
MicroRNA-503 inhibits the G1/S transition by downregulating cyclin D3 and E2F3 in hepatocellular carcinoma
Abstract
Background
Increasing evidence indicates that deregulation of microRNAs (miRNAs) is involved in tumorigenesis. Downregulation of microRNA-503 has been observed in various types of diseases, including cancer. However, the biological function of miR-503 in hepatocellular carcinoma (HCC) is still largely unknown. In this study we aimed to elucidate the prognostic implications of miR-503 in HCC and its pathophysiologic role.
Methods
Quantitative reverse transcriptase polymerase chain reaction was used to evaluate miR-503 expression in HCC tissues and cell lines. Western blotting was performed to evaluate the expression of the miR-503 target genes. In vivo and in vitro assays were performed to evaluate the function of miR-503 in HCC. Luciferase reporter assay was employed to validate the miR-503 target genes.
Results
miR-503 was frequently downregulated in HCC cell lines and tissues. Low expression levels of miR-503 were associated with enhanced malignant potential such as portal vein tumor thrombi, histologic grade, TNM stage, AFP level and poor prognosis. Multivariate analysis indicated that miR-503 downregulation was significantly associated with worse overall survival of HCC patients. Functional studies showed miR-503 suppressed the proliferation of HCC cells by induction of G1 phase arrest through Rb-E2F signaling pathways, and thus may function as a tumor suppressor. Further investigation characterized two cell cycle-related molecules, cyclin D3 and E2F3, as the direct miR-503 targets.
Conclusion
Our data highlight an important role for miR-503 in cell cycle regulation and in the molecular etiology of HCC, and implicate the potential application of miR-503 in prognosis prediction and miRNA-based HCC therapy.
</jats:sec
Recommended from our members
Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from Tumors and Blood
Neoantigen-specific T cells are increasingly viewed as important immunotherapy effectors, but physically isolating these rare cell populations is challenging. Here, we describe a sensitive method for the enumeration and isolation of neoantigen-specific CD8+ T cells from small samples of patient tumor or blood. The method relies on magnetic nanoparticles that present neoantigen-loaded major histocompatibility complex (MHC) tetramers at high avidity by barcoded DNA linkers. The magnetic particles provide a convenient handle to isolate the desired cell populations, and the barcoded DNA enables multiplexed analysis. The method exhibits superior recovery of antigen-specific T cell populations relative to literature approaches. We applied the method to profile neoantigen-specific T cell populations in the tumor and blood of patients with metastatic melanoma over the course of anti-PD1 checkpoint inhibitor therapy. We show that the method has value for monitoring clinical responses to cancer immunotherapy and might help guide the development of personalized mutational neoantigen-specific T cell therapies and cancer vaccines
MRC-5 fibroblast-conditioned medium influences multiple pathways regulating invasion, migration, proliferation, and apoptosis in hepatocellular carcinoma
A PPARγ agonist inhibits aldosterone-induced mesangial cell proliferation by blocking ROS-dependent EGFR intracellular signaling
Mesangial cell (MC) proliferation is a key feature in the pathogenesis of a number of renal diseases. Peroxisome proliferator-activated receptor-γ (PPARγ) has attracted considerable attention for its effects on stimulating cell differentiation and on inducing cell cycle arrest. We previously showed that aldosterone (Aldo) stimulates MC proliferation via the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, which was dependent on reactive oxygen species (ROS)-mediated epithelial growth factor receptor (EGFR) transactivation (Huang S, Zhang A, Ding G, and Chen R. Am J Physiol Renal Physiol 296: F1323–F1333, 2009). In this study, we examined whether the PPARγ agonist rosiglitazone inhibited Aldo-induced MC proliferation by modulating ROS-dependent EGFR intracellular signaling. Rosiglitazone at 1–10 μM dose dependently inhibited Aldo-induced MC proliferation of cultured mouse MCs. The inhibitory effect was blocked by the PPARγ antagonist PD-68235, indicating that the rosiglitazone effect acted through PPARγ activation. Rosiglitazone also arrested Aldo-induced cell cycle progression and suppressed expression of cyclins D1 and A. Moreover, rosiglitazone dose dependently blocked Aldo-induced ROS production, EGFR phosphorylation, and PI3K/Akt activation. These results suggest that the PPARγ agonist rosiglitazone may inhibit Aldo-induced MC proliferation directly, by affecting ROS/EGFR/PI3K/Akt signaling pathways and cell cycle-regulatory proteins. PPARγ might be a novel therapeutic target against glomerular diseases. </jats:p
Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation
NLRP3 Inflammasome Activation Confers Resistance to Loop Diuretics in Proteinuric Kidney Disease
- …
