592 research outputs found

    Flow cytometric detection of gamma interferon can effectively discriminate Mycobacterium bovis BCG-vaccinated cattle from M. bovis-infected cattle

    Get PDF
    Mycobacterium bovis is the causative agent of bovine tuberculosis, a disease that is increasing in incidence in United Kingdom cattle herds. In addition to increasing economic losses, the rise in bovine tuberculosis poses a human health risk. There is an urgent requirement for effective strategies for disease eradication; this will likely involve vaccination in conjunction with current test and slaughter policies. A policy involving vaccination would require an accurate diagnosis of M. bovis-infected animals and the potential to distinguish these animals from vaccinates. Currently used diagnostic tests, the skin test and gamma interferon (IFN-γ) blood test, have a sensitivity of up to 95%. A further complication is that M. bovis BCG-vaccinated animals are also scored positive by these tests. We tested the hypothesis that the quantification of IFN-γ-producing lymphocytes by flow cytometric analysis of intracellular IFN-γ expression would provide a more accurate discrimination of M. bovis-infected animals from BCG vaccinates. Significant numbers of IFN-γ-expressing CD4(+) T cells were detected following culture of heparinized blood from M. bovis-infected animals, but not from BCG vaccinates, with purified protein derived from M. bovis (PPD-B) or live mycobacteria. Only 1 of 17 BCG-vaccinated animals had a significant number of CD4(+) T lymphocytes expressing IFN-γ, compared with 21/22 M. bovis-infected animals. This assay could allow an accurate diagnosis of M. bovis and allow the discrimination of BCG-vaccinated cattle from infected cattle

    Probing Cool and Warm Infrared Galaxies using Photometric and Structural Measures

    Get PDF
    We have analyzed a sample of nearby cool and warm infrared (IR) galaxies using photometric and structural parameters. The set of measures include far-infrared color (C=log10[S60μm/S100μm]C = \log_{10}[S_{60\mu m}/S_{100\mu m}]), total IR luminosity (LTIRL_{TIR}), radio surface brightness as well as radio, near-infrared, and optical sizes. In a given luminosity range cool and warm galaxies are considered as those sources that are found approximately 1σ1 \sigma below and above the mean color in the far-infrared CLTIRC - L_{TIR} diagram. We find that galaxy radio surface brightness is well correlated with color whereas size is less well correlated with color. Our analysis indicates that IR galaxies that are dominated by cool dust are large, massive spirals that are not strongly interacting or merging and presumably the ones with the least active star formation. Dust in these cool objects is less centrally concentrated than in the more typical luminous and ultra-luminous IR galaxies that are dominated by warm dust. Our study also shows that low luminosity early type unbarred and transitional spirals are responsible for the large scatter in the CLTIRC - L_{TIR} diagram. Among highly luminous galaxies, late type unbarred spirals are predominately warm, and early type unbarred and barred are systematically cooler. We highlight the significance of CLTIRC - L_{TIR} diagram in terms of local and high redshifts sub-millimeter galaxies.Comment: Accepted for publication in ApJ, 2006, 23 pages, 3 postscript figures, 1 table. The table can be obtained on request from the author

    The Sunyaev-Zel'dovich Effect by Cocoons of Radio Galaxies

    Get PDF
    We estimate the deformation of the cosmic microwave background radiation by the hot region (``cocoon'') around a radio galaxy. A simple model is adopted for cocoon evolution while the jet is on, and a model of evolution is constructed after the jet is off. It is found that at low redshift the phase after the jet is off is longer than the lifetime of the jets. The Compton y-parameter generated by cocoons is calculated with a Press-Schechter number density evolution. The resultant value of y is of the same order as the COBE constraint. The Sunyaev-Zeldovich effect due to cocoons could therefore be a significant foreground source of small angular scale anisotropies in the cosmic microwave background radiation.Comment: Published version, 23 pages with 5 figure

    The Structure of IR Luminous Galaxies at 100 Microns

    Get PDF
    We have observed twenty two galaxies at 100 microns with the Kuiper Airborne Observatory in order to determine the size of their FIR emitting regions. Most of these galaxies are luminous far-infrared sources, with L_FIR > 10^11 L_sun. This data constitutes the highest spatial resolution ever achieved on luminous galaxies in the far infrared. Our data includes direct measurements of the spatial structure of the sources, in which we look for departures from point source profiles. Additionally, comparison of our small beam 100 micron fluxes with the large beam IRAS fluxes shows how much flux falls beyond our detectors but within the IRAS beam. Several sources with point- like cores show evidence for such a net flux deficit. We clearly resolved six of these galaxies at 100 microns and have some evidence for extension in seven others. Those galaxies which we have resolved can have little of their 100 micron flux directly emitted by a point-like active galactic nucleus (AGN). Dust heated to ~40 K by recent bursts of non-nuclear star formation provides the best explanation for their extreme FIR luminosity. In a few cases, heating of an extended region by a compact central source is also a plausible option. Assuming the FIR emission we see is from dust, we also use the sizes we derive to find the dust temperatures and optical depths at 100 microns which we translate into an effective visual extinction through the galaxy. Our work shows that studies of the far infrared structure of luminous infrared galaxies is clearly within the capabilities of new generation far infrared instrumentation, such as SOFIA and SIRTF.Comment: 8 tables, 23 figure

    Interferometric Observations of the Nuclear Region of Arp220 at Submillimeter Wavelengths

    Get PDF
    We report the first submillimeter interferometric observations of an ultraluminous infrared galaxy. We observed Arp220 in the CO J=3-2 line and 342GHz continuum with the single baseline CSO-JCMT interferometer consisting of the Caltech Submillimeter Observatory (CSO) and the James Clerk Maxwell Telescope (JCMT). Models were fit to the measured visibilities to constrain the structure of the source. The morphologies of the CO J=3-2 line and 342GHz continuum emission are similar to those seen in published maps at 230 and 110GHz. We clearly detect a binary source separated by about 1 arcsec in the east-west direction in the 342GHz continuum. The CO J=3-2 visibility amplitudes, however, indicate a more complicated structure, with evidence for a compact binary at some velocities and rather more extended structure at others. Less than 30% of the total CO J=3-2 emission is detected by the interferometer, which implies the presence of significant quantities of extended gas. We also obtained single-dish CO J=2-1, CO J=3-2 and HCN J=4-3 spectra. The HCN J=4-3 spectrum, unlike the CO spectra, is dominated by a single redshifted peak. The HCN J=4-3/CO J=3-2, HCN J=4-3/HCN J=1-0 and CO J=3-2/2-1 line ratios are larger in the redshifted (eastern) source, which suggests that the two sources may have different physical conditions. This result might be explained by the presence of an intense starburst that has begun to deplete or disperse the densest gas in the western source, while the eastern source harbors undispersed high density gas.Comment: 17 pages, 9 figures, 4 Tables. accepted by Ap

    APM 08279+5255: an ultraluminous BAL quasar at a redshift z=3.87

    Full text link
    We report on the discovery of a highly luminous, broad absorption line quasar at a redshift of z=3.87z=3.87 which is positionally coincident, within one arcsecond, with the IRAS FSC source F08279+5255. A chance alignment of the quasar and the IRAS source is extremely unlikely and we argue that the optical and FIR flux are different manifestations of the same object. With an R-band magnitude of 15.2, and an IRAS 60\mum flux of 0.51\jy, APM 08279+5255 is (apparently) easily the most intrinsically luminous object known, with L_{Bol}\sim5\times10^{15}L_{\odot}}. Imaging suggests that gravitational lensing may play a role in amplifying the intrinsic properties of the system. The optical spectrum of the quasar clearly reveals the presence of three potential lensing galaxies, \mg absorption systems at z=1.18z=1.18 and z=1.81z=1.81, and a \ly absorption system at z=3.07z=3.07. We estimate the total amplification of the optical component to be 40\approx40, but, due to the larger scale of the emitting region, would expect the infrared amplification to be significantly less. Even making the conservative assumption that all wavelengths are amplified by a factor 40, APM 08279+5255 still possesses a phenomenal luminosity of \simgt 10^{14L_{\odot}}, indicating that it belongs to a small, but significant population of high--redshift, hyperluminous objects with copious infrared emission.Comment: 15 Pages with Four figures. Accepted for publication in the Astrophysical Journa

    The Relative Orientation of Nuclear Accretion and Galaxy Stellar Disks in Seyfert Galaxies

    Get PDF
    We use the difference (delta) between the position angles of the nuclear radio emission and the host galaxy major axis to investigate the distribution of the angle (beta) between the axes of the nuclear accretion disk and the host galaxy disk in Seyfert galaxies. We provide a critical appraisal of the quality of all measurements, and find that the data are limited by observational uncertainties and biases, such as the well known deficiency of Seyfert galaxies of high inclination. There is weak evidence that the distribution of delta for Seyfert 2 galaxies may be different (at the 90% confidence level) from a uniform distribution, while the Seyfert 1 delta distribution is not significantly different from a uniform distribution or from the Seyfert 2 delta distribution. The cause of the possible non-uniformity in the distribution of delta for Seyfert 2 galaxies is discussed. Seyfert nuclei in late-type spiral galaxies may favor large values of delta (at the ~96% confidence level), while those in early-type galaxies show a more or less random distribution of delta. This may imply that the nuclear accretion disk in non-interacting late-type spirals tends to align with the stellar disk, while that in early-type galaxies is more randomly oriented, perhaps as a result of accretion following a galaxy merger. We point out that biases in the distribution of inclination translate to biased estimates of beta in the context of the unified scheme. When this effect is taken into account, the distributions of beta for all Seyferts together, and of Seyfert 1's and 2's separately, agree with the hypothesis that the radio jets are randomly oriented with respect to the galaxy disk. The data are consistent with the expectations of the unified scheme, but do not demand it.Comment: To appear in the Astrophysical Journal, Vol 516 #1, May 1, 1999. Corrected figure placement within pape

    Black hole in the West Nucleus of Arp 220

    Full text link
    We present new observations with the IRAM Interferometer, in its longest-baseline configuration, of the CO(2-1) line and the 1.3mm dust radiation from the Arp 220 nuclear region. The dust source in the West nucleus has a size of 0.19 x 0.13 arcsec and a 1.3mm brightness temperature of 90K. This implies that the dust ring in the West nucleus has a high opacity, with tau = 1 at 1.1mm. Not only is the dust ring itself optically thick in the submm and far-IR, but it is surrounded by the previously-known, rapidly rotating molecular disk of size 0.5 arcsec that is also optically thick in the mid-IR. The molecular ring is cooler than the hot dust disk because the CO(2-1) line is seen in absorption against the dust disk. The dust ring is massive (1E9 solar masses), compact (radius 35pc), and hot (true dust temperature 170K). It resembles rather strikingly the dust ring detected around the quasar APM 08279+52, and is most unlike the warm, extended dust sources in starburst galaxies. Because there is a strong temperature gradient from the hot dust ring to the cooler molecular disk, the heating must come from a concentrated source, an AGN accretion disk that is completely invisible at optical wavelengths, and heavily obscured in hard X-rays.Comment: Reference list updated for 2007 publications; estimated position errors increase

    Radio source stacking and the infrared / radio correlation at microJy flux densities

    Full text link
    We investigate the infrared / radio correlation using the technique of source stacking, in order to probe the average properties of radio sources that are too faint to be detected individually. We compare the two methods used in the literature to stack sources, and demonstrate that the creation of stacked images leads to a loss of information. We stack infrared sources in the Spitzer extragalactic First Look Survey (xFLS) field, and the three northern Spitzer Wide-area Infrared Extragalactic survey (SWIRE) fields, using radio surveys created at 610 MHz and 1.4 GHz, and find a variation in the absolute strength of the correlation between the xFLS and SWIRE regions, but no evidence for significant evolution in the correlation over the 24-um flux density range 150 uJy - 2 mJy. We carry out the first radio source stacking experiment using 70-um-selected galaxies, and find no evidence for significant evolution over the 70-um flux density range 10 mJy - 100 mJy.Comment: 11 pages, 12 figures. Accepted for publication in MNRA

    Mid Infrared Polarisation of Ultraluminous Infrared Galaxies

    Get PDF
    The mid infrared polarisation properties of four Ultraluminous Infrared Galaxies (ULIRGs) have been investigated by broad band filter observations with the ISOCAM instrument on board the Infrared Space Observatory (ISO). The wavelength region from 5 to 18 mic. was selected where the emission from the putative torus peaks. We report detection of polarisation for all ULIRGs studied. The fractional polarisation ranges from about 3% up to 8%. The highest polarisation is recorded in Mrk231 which has a clear AGN signature, whereas the lowest is for Arp220, which is generally thought to be powered predominantly by star formation. We discuss the various mechanisms that could give rise to the polarisation and conclude that the most likely interpretation is that it is due to magnetically aligned elongated dust grains. This is the same mechanism believed to be operating in a number of galactic sources. The position angle of polarisation could give the projected magnetic field direction and therefore constrain models for the formation of the tori.Comment: Accepted by A&A (Letter
    corecore