273 research outputs found
Recommended from our members
AGS slow extracted beam improvement
The Brookhaven AGS is a strong focusing accelerator which is used to accelerate protons and various heavy ion species to an equivalent proton energy of 29 GeV. Since the late 1960`s it has been serving high energy physics (HEP - proton beam) users of both slow and fast extracted beams. The AGS fixed target program presently uses primary proton and heavy ion beams (HIP) in slowly extracted fashion over spill lengths of 1.5 to 4.0 seconds. Extraction is accomplished by flattoping the main and extraction magnets and exciting a third integer resonance in the AGS. Over the long spill times, control of the subharmonic amplitude components up to a frequency of 1 kilohertz is very crucial. One of the most critical contributions to spill modulation is due to the AGS MMPS. An active filter was developed to reduce these frequencies and it`s operation is described in a previous paper. However there are still frequency components in the 60-720 Hz sub-harmonic ripple range, modulating the spill structure due to extraction power supplies and any remaining structures on the AGS MMPS. A recent scheme is being developed to use the existing tune-trim control horizontal quadrupole magnets and power supply to further reduce these troublesome noise sources. Feedback from an external beam sensor and overcoming the limitations of the quadrupole system by lead/lag compensation techniques will be described
Recommended from our members
Test fast kicker pulser
In this paper, a test pulser of the Brookhaven AGS Booster extraction fast kicker is described. The pulser is projected for both proton and heavy ion operation. A load of total inductance 2.15 /mu/H is used for the test pulser. The PFN voltage is required to be below 40 kV for operation in air. Rise time of the pulse for proton extraction operation is about 120ns up to 97% of full current (1000A), and, for heavy ion extraction, 160ns up to 98% of full current (1615A). R-C compensation networks are used for pulse front edge sharpening. The flexibility of operation is obtained basically by switching an energy dumping resistor to match or mismatch the PFN impedance. Some comments on stray capacitance and stray inductance effects are included. 3 refs., 10 figs., 2 tabs
mTOR: from growth signal integration to cancer, diabetes and ageing
In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy
and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.National Institutes of Health (U.S.)Howard Hughes Medical InstituteWhitehead Institute for Biomedical ResearchJane Coffin Childs Memorial Fund for Medical Research (Postdoctoral Fellowship)Human Frontier Science Program (Strasbourg, France
Limits on the production of neutral penetrating states in a beam dump
We present limits on the production of neutral penetrating states produced in 28 GeV proton nucleus collisions. We obtain limits for light, heavy and unstable neutral states. For light stable states our limit [sigma]I[sigma]P-69cm4/nucleon2 is more than a factor of 5.5 better than previous limits. Time of flight techniques are used to study heavy states. We have poor sensitivity to short-lived states.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24349/1/0000616.pd
Role of Receptor-Interacting Protein 140 in human fat cells
<p>Abstract</p> <p>Background</p> <p>Mice lacking <it>Receptor-interacting protein 140 (RIP140) </it>have reduced body fat which at least partly is mediated through increased lipid and glucose metabolism in adipose tissue. In humans, <it>RIP140 </it>is lower expressed in visceral white adipose tissue (WAT) of obese versus lean subjects. We investigated the role of <it>RIP140 </it>in human subcutaneous WAT, which is the major fat depot of the body.</p> <p>Methods</p> <p>Messenger RNA levels of <it>RIP140 </it>were measured in samples of subcutaneous WAT from women with a wide variation in BMI and in different human WAT preparations. <it>RIP140 </it>mRNA was knocked down with siRNA in <it>in vitro </it>differentiated adipocytes and the impact on glucose transport and mRNA levels of target genes determined.</p> <p>Results</p> <p><it>RIP140 </it>mRNA levels in subcutaneous WAT were decreased among obese compared to lean women and increased by weight-loss, but did not associate with mitochondrial DNA copy number. <it>RIP140 </it>expression increased during adipocyte differentiation <it>in vitro </it>and was higher in isolated adipocytes compared to corresponding pieces of WAT. Knock down of <it>RIP140 </it>increased basal glucose transport and mRNA levels of <it>glucose transporter 4 </it>and <it>uncoupling protein-1</it>.</p> <p>Conclusions</p> <p>Human <it>RIP140 </it>inhibits glucose uptake and the expression of genes promoting energy expenditure in the same fashion as the murine orthologue. Increased levels of human <it>RIP140 </it>in subcutaneous WAT of lean subjects may contribute to economize on energy stores. By contrast, the function and expression pattern does not support that <it>RIP140 </it>regulate human obesity.</p
Heterogeneity in the physiological states and pharmacological responses of differentiating 3T3-L1 preadipocytes
A systems biology–based analysis shows that differentiating adipocytes look very different at the single-cell level and form distinct cellular subpopulations
PKCε Stimulated Arginine Methylation of RIP140 for Its Nuclear-Cytoplasmic Export in Adipocyte Differentiation
Receptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that plays roles in diverse metabolic processes including fat accumulation in adipocytes. Previously we identified three methylated arginine residues in RIP140, which rendered its export to the cytoplasm; but it was unclear what triggered RIP140 arginine methylation.In this study, we determined the activated PKCepsilon as the specific trigger for RIP140 arginine methylation and its subsequent export. We identified two PKCepsilon-phosphorylated residues of RIP140, Ser-102 and Ser-1003, which synergistically stimulated direct binding of RIP140 by 14-3-3 that recruited protein arginine methyl transferase 1 to methylate RIP140. The methylated RIP140 then preferentially recruited exportin 1 for nuclear export. As a result, the nuclear gene-repressive activity of RIP140 was reduced. In RIP140 null adipocyte cultures, the defect in fat accumulation was effectively rescued by the phosphorylation-deficient mutant RIP140 that resided predominantly in the nucleus, but less so by the phospho-mimetic RIP140 that was exported to the cytoplasm.This study uncovers a novel means, via a cascade of protein modifications, to inactivate, or suppress, the nuclear action of an important transcription coregulator RIP140, and delineates the first specific phosphorylation-arginine methylation cascade that could alter protein subcellular distribution and biological activity
A MicroRNA Linking Human Positive Selection and Metabolic Disorders
Postponed access: the file will be accessible after 2021-10-14Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.acceptedVersio
- …
