427 research outputs found

    A Lumped-Parameter Model for Nonlinear Waves in Graphene

    Get PDF
    A lumped-parameter nonlinear spring-mass model which takes into account the third-order elastic sti ness constant is considered for mod- eling the free and forced axial vibrations of a graphene sheet with one xed end and one free end with a mass attached. It 's demonstrated through this simple model that, in free vibration, within certain initial energy level and depending upon its length and the nonlinear elas- tic constants, there exist bounded periodic solutions which are non- sinusoidal, and that for each xed energy level, there is a bifurcation point depending upon material constants, beyond which the periodic solutions disappear. The amplitude, frequency, and the corresponding wave solutions for both free and forced harmonic vibrations are cal- culated analytically and numerically. Energy sweep is also performed for resonance applications

    A Lumped-Parameter Model for Nonlinear Waves in Graphene

    Get PDF
    A lumped-parameter nonlinear spring-mass model which takes into account the third-order elastic stiffness constant is considered for modeling the free and forced axial vibrations of a graphene sheet with one fixed end and one free end with a mass attached. It is demonstrated through this simple model that, in free vibration, within certain initial energy level and depending upon its length and the nonlinear elastic constants, that there exist bounded periodic solutions which are non-sinusoidal, and that for each fixed energy level, there is a bifurcation point depending upon material constants, beyond which the periodic solutions disappear. The amplitude, frequency, and the corresponding wave solutions for both free and forced harmonic vibrations are calculated analytically and numerically. Energy sweep is also performed for resonance application

    On the Buckling of Euler Graphene Beams Subject to Axial Compressive Load

    Get PDF
    In this paper, we consider the buckling of an Euler-Bernoulli graphene beam due to an axial compressive load. We formulate the problem as a non-linear (eigenvalue) two-point boundary value problem, prove some properties of the eigenpairs and introduce a suitable numerical shooting method scheme for approximating them. We present the perturbation and the numerical approximations of the first and second buckling loads and the corresponding shape

    Observation of electronic and atomic shell effects in gold nanowires

    Get PDF
    The formation of gold nanowires in vacuum at room temperature reveals a periodic spectrum of exceptionally stable diameters. This is identified as shell structure similar to that which was recently discovered for alkali metals at low temperatures. The gold nanowires present two competing `magic' series of stable diameters, one governed by electronic structure and the other by the atomic packing.Comment: 4 pages, 4 figure

    Room temperature magnetoelectric properties of type-II InAsSbP quantum dots and nanorings

    Get PDF
    Quaternary InAsSbP quantum dots (QDs) and quantum rings (QRs) are grown on InAs (100) substrates by liquid phase epitaxy. High resolution scanning electron and atomic force microscopes are used for the characterization. The room temperature optoelectronic and magnetoelectric properties of the InAsSbP type-II QDs and QRs are investigated. For the QD-based structures, specific dips on the capacitance-voltage characteristic are revealed and measured, which are qualitatively explained by the holes thermal and tunnel emissions from the QDs. Specific fractures at room temperature are experimentally found in the magnetic field dependence of an electric sheet resistance for the InAsSbP QRs-based sample. (C) 2012 American Institute of Physics. (doi:10.1063/1.3676437

    Hole Doping Dependence of the Coherence Length in La2xSrxCuO4La_{2-x}Sr_xCuO_4 Thin Films

    Full text link
    By measuring the field and temperature dependence of magnetization on systematically doped La2xSrxCuO4La_{2-x}Sr_xCuO_4 thin films, the critical current density jc(0)j_c(0) and the collective pinning energy Up(0)U_p(0) are determined in single vortex creep regime. Together with the published data of superfluid density, condensation energy and anisotropy, for the first time we derive the doping dependence of the coherence length or vortex core size in wide doping regime directly from the low temperature data. It is found that the coherence length drops in the underdoped region and increases in the overdoped side with the increase of hole concentration. The result in underdoped region clearly deviates from what expected by the pre-formed pairing model if one simply associates the pseudogap with the upper-critical field.Comment: 4 pages, 4 figure
    corecore