2,161 research outputs found

    Finite element simulation of microphotonic lasing system

    Full text link
    We present a method for performing time domain simulations of a microphotonic system containing a four level gain medium based on the finite element method. This method includes an approximation that involves expanding the pump and probe electromagnetic fields around their respective carrier frequencies, providing a dramatic speedup of the time evolution. Finally, we present a two dimensional example of this model, simulating a cylindrical spaser array consisting of a four level gain medium inside of a metal shell

    Metal-insulator transitions in anisotropic 2d systems

    Full text link
    Several phenomena related to the critical behaviour of non-interacting electrons in a disordered 2d tight-binding system with a magnetic field are studied. Localization lengths, critical exponents and density of states are computed using transfer matrix techniques. Scaling functions of isotropic systems are recovered once the dimension of the system in each direction is chosen proportional to the localization length. It is also found that the critical point is independent of the propagation direction, and that the critical exponents for the localization length for both propagating directions are equal to that of the isotropic system (approximately 7/3). We also calculate the critical value of the scaling function for both the isotropic and the anisotropic system. It is found that the isotropic value equals the geometric mean of the two anisotropic values. Detailed numerical studies of the density of states for the isotropic system reveals that for an appreciable amount of disorder the critical energy is off the band center.Comment: 6 pages RevTeX, 6 figures included, submitted to Physical Review

    An efficient way to reduce losses of left-handed metamaterials

    Full text link
    We propose a simple and effective way to reduce the losses in left-handed metamaterials by manipulating the values of the effective parameters R, L, and C. We investigate the role of losses of the short-wire pairs and the fishnet structures. Increasing the effective inductance to capacitance ratio, L/C, reduces the losses and the figure of merit can increase substantially, especially at THz frequencies and in the optical regime

    Magnetic and Electric Excitations in Split Ring Resonators

    Full text link
    We studied the electric and magnetic resonance of U-shaped SRRs. We showed that higher order excitation modes exist in both of the electric and magnetic resonances. The nodes in the current distribution were found for all the resonance modes. It turns out that the magnetic resonances are the modes with odd-number of half-wavelength of the current wave, i.e. 1/2, 3/2 and 5/2 wavelengths modes, and the electric resonances are modes with integer number of whole-wavelength of current wave, i.e. 1, 2 and 3 wavelengths modes. We discussed the electric moment and magnetic moment of the electric and magnetic resonances, and their dependence to the length of two parallel side arms. We show that the magnetic moment of magnetic resonance vanishes as the length side arms of the SRR reduces to zero, i.e. a rod does not give any magnetic moment or magnetic resonance.Comment: Journal-ref and DOI link adde

    The probability distribution of the conductance at the mobility edge

    Full text link
    The probability distribution of the conductance p(g) of disordered 2d and 3d systems is calculated by transfer matrix techniques. As expected, p(g) is Gaussian for extended states while for localized states it is log-normal. We find that at the mobility edge p(g) is highly asymmetric and universal.Comment: 3 pages RevTeX, 6 figures included, submitted to Physica

    Self-consistent calculations of loss compensated fishnet metamaterials

    Full text link
    We present a computational approach, allowing for a self-consistent treatment of three-dimensional (3D) fishnet metamaterial coupled to a gain material incorporated into the nanostructure. We show numerically that one can compensate the losses by incorporating gain material inside the fishnet structure. The pump rate needed to compensate the loss is much smaller than the bulk gain and the figure of merit (FOM = |Re(n)/Im(n)|) increases dramatically with the pump rate. Transmission, reflection, and absorption data, as well as the retrieved effective parameters, are presented for the fishnet structure with and without gain material. Kramers-Kronig relations of the effective parameters are in excellent agreement with the retrieved results with gain.Comment: 5 pages, 9 figures. Accepted to Physical Review B as a rapid communicatio

    Bulk Negative Index Photonic Metamaterials for Direct Laser Writing

    Full text link
    We show the designs of one- and two-dimensional photonic negative index metamaterials around telecom wavelengths. Designed bulk structures are inherently connected, which render their fabrication feasible by direct laser writing and chemical vapor deposition.Comment: 12 pages, 4 figures, submitted to Opt. Let

    Theoretical investigation of one-dimensional cavities in two-dimensional photonic crystals

    Full text link
    We study numerically the features of the resonant peak of one-dimensional (1-D) dielectric cavities in a two-dimensional (2-D) hexagonal lattice. We use both the transfer matrix method and the finite difference time-domain (FDTD) method to calculate the transmission coefficient. We compare the two methods and discuss their results for the transmission and quality factor Q of the resonant peak. We also examine the dependence of Q on absorption and losses, the thickness of the sample and the lateral width of the cavity. The Q- factor dependence on the width of the source in the FDTD calculations is also given.Comment: 25 pages, 8 figure
    corecore