1,077 research outputs found

    Oscillating shear index, wall shear stress and low density lipoprotein accumulation in human RCAs

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Atherosclerosis shows predilection in regions of coronary arteries with hemodynamic particularities as, local disturbances of Wall Shear Stress (WSS) in space and time, and locally high concentrations of lipoprotein. Six, image-based human deceased, Right Coronary Arteries (RCA) are used to elucidate, a) Low Density Lipoprotein (LDL) transport under steady flow and b) oscillating flow (no mass transfer). A semi-permeable nature of the arterial wall computational model is incorporated with hydraulic conductivity and permeability treated as WSS dependent. The 3D reconstruction technique is a combination of angiography and IVUS. LDL is elevated at locations where WSS is low. Under steady flow conditions the area-averaged normalized LDL concentration over the RCAs, using shear dependent water infiltration and endothelial permeability is 9.6 % higher than at entrance. However, under constant water infiltration and endothelial permeability this value is only 3.2 %. High Oscillating Shear Index (OSI) and low average WSS nearly co-locate. Approximately 630000 grid nodes proved to be sufficient enough to accurately describe the oscillating flow and the LDL concentration within the RCAs

    Severity parameter and global importance factor of non-newtonian models in 3D reconstructed human left coronary artery

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.The capabilities and limitations of various molecular viscosity models, when testing Left Coronary Artery (LCA) tree, were analyzed via: molecular viscosity, local and global non-Newtonian importance factors, Wall Shear Stress (WSS) and Wall Shear Stress Gradient (WSSG). Seven non-Newtonian molecular viscosity models, plus the Newtonian one, were compared. Dense grid of 620000 nodes located, mostly, at near to low WSS flow regions (endothelium regions) is needed for current LCA application. The WSS distribution yields a consistent LCA pattern for nearly all non-Newtonian models. High molecular viscosity, low WSS low WSSG values appear at proximal LCA regions at the outer walls of the major bifurcation. The global importance factor for the non-Newtonian power law model yields 76.7% (non-Newtonian flow), while for the Generalized power law model this value is 6.1% (Newtonian flow). The capabilities of the applied non-Newtonian law models appear at low strain rates. The Newtonian blood flow treatment is considered to be a good approximation at mid-and high-strain rates. In general, the non-Newtonian power law and the Generalized power law blood viscosity models are considered to approximate the molecular viscosity and WSS calculations in a more satisfactory way

    Computationally efficient calibration of WATCLASS Hydrologic models using surrogate optimization

    No full text
    International audienceIn this approach, exploration of the cost function space was performed with an inexpensive surrogate function, not the expensive original function. The Design and Analysis of Computer Experiments(DACE) surrogate function, which is one type of approximate models, which takes correlation function for error was employed. The results for Monte Carlo Sampling, Latin Hypercube Sampling and Design and Analysis of Computer Experiments(DACE) approximate model have been compared. The results show that DACE model has a good potential for predicting the trend of simulation results. The case study of this document was WATCLASS hydrologic model calibration on Smokey-River watershed

    Shadowing unstable orbits of the Sitnikov elliptic 3-body problem

    Full text link
    Errors in numerical simulations of gravitating systems can be magnified exponentially over short periods of time. Numerical shadowing provides a way of demonstrating that the dynamics represented by numerical simulations are representative of true dynamics. Using the Sitnikov Problem as an example, it is demonstrated that unstable orbits of the 3-body problem can be shadowed for long periods of time. In addition, it is shown that the stretching of phase space near escape and capture regions is a cause for the failure of the shadowing refinement procedure.Comment: 9 pages, 13 figures, accepted in MNRA

    Wall shear stress and low density lipoprotein concentration in stented arteries

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Current computational analysis results quantify Wall Shear Stress (WSS) and its impact on Low Density Lipoprotein (LDL) concentration of a fully deployed straight artery stent. Atherosclerosis shows predilection in arterial regions with hemodynamic particularities, as local disturbances of WSS in space, and locally high concentrations of lipoprotein. The WSS and subsequently the LDL distribution are important indicators of stent performance. A typical 6.0 mm diameter straight stented artery is used to elucidate the WSS and the LDL transport under steady flow conditions treating the blood as a non-Newtonian fluid. Struts are 50.0 % embedded into the arterial wall. Emphasis is placed in the LDL distribution at the upstream and downstream flow regions of each strut intersection. Reduced WSS values are observed towards outlet. At the strut intersections, high WSS values are observed possibly causing platelet activation. Prone to plaque development are flow regions located at specific strut intersections (mostly at the vicinity of the curved struts) where increased LDL concentration is observed. The maximum LDL concentration over the stented artery reaches a value of 3.8 % higher than that at the entrance. The concentration at distal to any strut region was higher than proximal to the strut

    A phase II study of capecitabine and oxalplatin combination chemotherapy in patients with inoperable adenocarcinoma of the gall bladder or biliary tract

    Get PDF
    Background: Advanced biliary tract carcinomas are associated with a poor prognosis, and palliative chemotherapy has only modest benefit. This multi-centre phase II study was conducted to determine the efficacy of capecitabine in combination with oxaliplatin in patients with inoperable gall bladder or biliary tract cancer. Methods: This was a Phase II, non-randomised, two-stage Simon design, multi-centre study. Ethics approval was sought and obtained by the North West MREC, and then locally by the West Glasgow Hospitals Research Ethics Com mittee. Eligible patients with inoperable locally advanced or metastatic adenocarcinoma of the gall bladder or biliary tract and with adequate performance status, haematologic, renal, and hepatic function were treated with capecit abine (1000 mg/m2 po, twice daily, days 1–14) and oxaliplatin (130 mg/m2 i.v., day 1) every 3 weeks for up to six cycles. The primary objective of the study was to determine the objective tumour response rates (complete and partial). The secondary objectives included assessment of toxicity, progression-free survival, and overall survival. Results: Forty-three patients were recruited between July 2003 and December 2005. The regimen was well tolerated with no grade 3/4 neutropenia or thrombocytopenia. Grade 3/4 sensory neuropathy was observed in six patients. Two-thirds of patients received their chemotherapy without any dose delays. Overall response rate was 23.8 % (95 % CI 12.05–39.5 %). Stable disease was observed in a further 13 patients (31 %) and progressive disease observed in 12 (28.6 %) of patients. The median progression-free survival was 4.6 months (95 % CI 2.8–6.4 months; Fig. 1) and the median overall survival 7.9 months (95 % CI 5.3–10.4 months; Fig. 2). Conclusion: Capecitabine combined with oxaliplatin has a lower disease control and shorter overall survival than the combination of cisplatin with gemcitabine which has subsequently become the standard of care in this disease. How ever, capecitabine in combination with oxaliplatin does have modest activity in this disease, and can be considered as an alternative treatment option for patients in whom cisplatin and/or gemcitabine are contra-indicated

    Identification de pathologies à partir des médicaments délivrés aux patients

    Get PDF
    La société IMS Health a développé une base de données IMS LifeLinkTM Treatment Dynamics qui collecte un identifiant patient anonymisé en pharmacie. Le suivi dans le temps des délivrances de médicaments à la pharmacie, tel qu’il est réalisé par l’étude IMS LifeLinkTM Treatment Dynamics (IMS LTD ou LTD), participe au développement de nouvelles données en vie réelle. Pour approfondir leurs analyses, IMS Health nous a demandé de déterminer un algorithme permettant, à partir des médicaments délivrés aux patients, de déterminer les pathologies dont il est atteint. Le domaine de cette étude se restreint dans un premier temps aux pathologies autoimmunes. L’exploitation de la base de données avec notre algorithme, permettra d’évaluer et de comprendre les parcours de soins, de mesurer l’impact des programmes et des actions en santé, ainsi que d’évaluer les médicaments post-­‐inscription pour ces pathologies . Au cours de ce projet, nous avons donc déterminé quels sont les schémas thérapeutiques qui nous permettent d'affirmer qu'un patient est atteint de telle ou telle pathologie. Cette phase de recherche a à la fois été menée de façon théorique, et empirique. En effet, nous nous sommes appuyés sur l’expertise de médecin en activité, afin de recueillir un maximum d’informations, et de bénéficier du recul qu’ils avaient sur le diagnostic de ces pathologies. Ensuite, nous avons formalisé ces schémas thérapeutiques, de façon à ce qu’ils soient compréhensible pour des développeurs informatiques sans recul dans le domaine. Enfin, nous avons pris soin de laisser une trace de la façon dont nous avons procédé, afin que cette étude puisse être élargie dans les prochaines années

    Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale

    No full text
    International audienceEnvironment Canada has been developing a community environmental modelling system (Modélisation Environmentale Communautaire ? MEC), which is designed to facilitate coupling between models focusing on different components of the earth system. The ultimate objective of MEC is to use the coupled models to produce operational forecasts. MESH (MEC ? Surface and Hydrology), a configuration of MEC currently under development, is specialized for coupled land-surface and hydrological models. To determine the specific requirements for MESH, its different components were implemented on the Laurentian Great Lakes watershed, situated on the Canada-US border. This experiment showed that MESH can help us better understand the behaviour of different land-surface models, test different schemes for producing ensemble streamflow forecasts, and provide a means of sharing the data, the models and the results with collaborators and end-users. This modelling framework is at the heart of a testbed proposal for the Hydrologic Ensemble Prediction Experiment (HEPEX) which should allow us to make use of the North American Ensemble Forecasting System (NAEFS) to improve streamflow forecasts of the Great Lakes tributaries, and demonstrate how MESH can contribute to a Community Hydrologic Prediction System (CHPS)
    corecore