981 research outputs found

    Nonlinear parabolic inequalities on a general convex domain

    No full text
    International audienceThe paper deals with the existence and uniqueness of solutions of some non linear parabolic inequalities in the Orlicz-Sobolev spaces framework

    A monoclonal antibody against DNA binding helix of p53 protein

    Get PDF
    Three monoclonal antibodies (Mabs) were generated against p53 DNA-binding core domain. When tested by immunoprecipitation, Western blot and immunofluorescence techniques, Mab 9E4, as well as 7D3 and 6B10 reacted with both wild-type and various mutant p53 proteins. The epitopes recognized by Mabs 7D3, 9E4 and 6B10 were located respectively within the amino acid residues 211-220, 281-290 and 291-300 of human p53 protein. The epitope recognized by 9E4 Mab coincides with helix 2, also called p53 DNA binding helix, which allows the direct contact of the protein with its target DNA sequences. This antibody may be useful to study transcription-dependent and transcription-independent activities of wild-type and mutant p53 proteins

    Challenges to the development of antigen-specific breast cancer vaccines

    Get PDF
    Continued progress in the development of antigen-specific breast cancer vaccines depends on the identification of appropriate target antigens, the establishment of effective immunization strategies, and the ability to circumvent immune escape mechanisms. Methods such as T cell epitope cloning and serological expression cloning (SEREX) have led to the identification of a number target antigens expressed in breast cancer. Improved immunization strategies, such as using dendritic cells to present tumor-associated antigens to T lymphocytes, have been shown to induce antigen-specific T cell responses in vivo and, in some cases, objective clinical responses. An outcome of successful tumor immunity is the evolution of antigen-loss tumor variants. The development of a polyvalent breast cancer vaccine, directed against a panel of tumor-associated antigens, may counteract this form of immune escape

    Anosmin-1 contributes to brain tumor malignancy through integrin signal pathways

    Get PDF
    Anosmin-1, encoded by the KAL1 gene, is an extracellular matrix (ECM)-associated protein which plays essential roles in the establishment of olfactory and GNRH neurons during early brain development. Loss-of-function mutations of KAL1 results in Kallmann syndrome with delayed puberty and anosmia. There is, however, little comprehension of its role in the developed brain. As reactivation of developmental signal pathways often takes part in tumorigenesis, we investigated if anosmin-1-mediated cellular mechanisms associated with brain tumors. Our meta-analysis of gene expression profiles of patients' samples and public microarray datasets indicated that KAL1 mRNA was significantly upregulated in high-grade primary brain tumors compared with the normal brain and low-grade tumors. The tumor-promoting capacity of anosmin-1 was demonstrated in the glioblastoma cell lines, where anosmin-1 enhanced cell motility and proliferation. Notably, anosmin-1 formed a part of active β1 integrin complex, inducing downstream signaling pathways. ShRNA-mediated knockdown of anosmin-1 attenuated motility and growth of tumor cells and induced apoptosis. Anosmin-1 may also enhance the invasion of tumor cells within the ECM by modulating cell adhesion and activating extracellular proteases. In a mouse xenograft model, anosmin-1-expressing tumors grew faster, indicating the role of anosmin-1 in tumor microenvironment in vivo. Combined, these data suggest that anosmin-1 can facilitate tumor cell proliferation, migration, invasion, and survival. Therefore, although the normal function of anosmin-1 is required in the proper development of GNRH neurons, overexpression of anosmin-1 in the developed brain may be an underlying mechanism for some brain tumors

    A randomised, double-blind, placebo-controlled trial of repeated nebulisation of non-viral cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy in patients with cystic fibrosis

    Get PDF
    BACKGROUND: Cystic fibrosis (CF) is a chronic, life-limiting disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene leading to abnormal airway surface ion transport, chronic lung infections, inflammation and eventual respiratory failure. With the exception of the small-molecule potentiator, ivacaftor (Kalydeco®, Vertex Pharmaceuticals, Boston, MA, USA), which is suitable for a small proportion of patients, there are no licensed therapies targeting the basic defect. The UK Cystic Fibrosis Gene Therapy Consortium has taken a cationic lipid-mediated CFTR gene therapy formulation through preclinical and clinical development. OBJECTIVE: To determine clinical efficacy of the formulation delivered to the airways over a period of 1 year in patients with CF. DESIGN: This was a randomised, double-blind, placebo-controlled Phase IIb trial of the CFTR gene–liposome complex pGM169/GL67A. Randomisation was performed via InForm™ version 4.6 (Phase Forward Incorporated, Oracle, CA, USA) and was 1 : 1, except for patients in the mechanistic subgroups (2 : 1). Allocation was blinded by masking nebuliser chambers. SETTINGS: Data were collected in the clinical and scientific sites and entered onto a trial-specific InForm, version 4.6 database. PARTICIPANTS: Patients with CF aged ≥ 12 years with forced expiratory volume in the first second (FEV1) between 50% and 90% predicted and any combination of CFTR mutations. The per-protocol group (≥ 9 doses) consisted of 54 patients receiving placebo (62 randomised) and 62 patients receiving gene therapy (78 randomised). INTERVENTIONS: Subjects received 5 ml of nebulised pGM169/G67A (active) or 0.9% saline (placebo) at 28 (±5)-day intervals over 1 year. MAIN OUTCOME MEASURES: The primary end point was the relative change in percentage predicted FEV1 over the 12-month period. A number of secondary clinical outcomes were assessed alongside safety measures: other spirometric values; lung clearance index (LCI) assessed by multibreath washout; structural disease on computed tomography (CT) scan; the Cystic Fibrosis Questionnaire – Revised (CFQ-R), a validated quality-of-life questionnaire; exercise capacity and monitoring; systemic and sputum inflammatory markers; and adverse events (AEs). A mechanistic study was performed in a subgroup in whom transgene deoxyribonucleic acid (DNA) and messenger ribonucleic acid (mRNA) was measured alongside nasal and lower airway potential difference. RESULTS: There was a significant (p = 0.046) treatment effect (TE) of 3.7% [95% confidence interval (CI) 0.1% to 7.3%] in the primary end point at 12 months and in secondary end points, including forced vital capacity (FVC) (p = 0.031) and CT gas trapping (p = 0.048). Other outcomes, although not reaching statistical significance, favoured active treatment. Effects were noted by 1 month and were irrespective of sex, age or CFTR mutation class. Subjects with a more severe baseline FEV1 had a FEV1 TE of 6.4% (95% CI 0.8% to 12.1%) and greater changes in many other secondary outcomes. However, the more mildly affected group also demonstrated benefits, particularly in small airway disease markers such as LCI. The active group showed a significantly (p = 0.032) greater bronchial chloride secretory response. No difference in treatment-attributable AEs was seen between the placebo and active groups. CONCLUSIONS: Monthly application of the pGM169/GL67A gene therapy formulation was associated with an improvement in lung function, other clinically relevant parameters and bronchial CFTR function, compared with placebo. LIMITATIONS: Although encouraging, the improvement in FEV1 was modest and was not accompanied by detectable improvement in patients’ quality of life. FUTURE WORK: Future work will focus on attempts to increase efficacy by increasing dose or frequency, the coadministration of a CFTR potentiator, or the use of modified viral vectors capable of repeated administration. TRIAL REGISTRATION: ClinicalTrials.gov NCT01621867

    Kallmann syndrome: a hystorical, clinical and molecular review

    Get PDF
    Kallmann syndrome (KS), the association of hypogonadotropic hypogonadism and anosmia, was described by Maestre de San Juan in 1856 and characterized as a hereditary condition by Franz Josef Kallmann in 1944. Many aspects such as pathogeny, phenotype and genotype in KS were described in the last fifteen years. The knowledge of this condition has grown fast, making it difficult to update. Here we review historical aspects of this condition and its discoverers and describe new findings regarding the embryogenesis of the olfactory bulb and GnRH secreting neuronal tracts that are important for understanding the association of hypogonadism and anosmia. Additionally, we describe the phenotypic and genotypic heterogeneity of KS, including five related genes (KAL-1, FGFR1, PROKR2, PROK2 e NELF), and discuss the function of each codified protein in migration and maturation of the olfactory and GnRH neurons, with data from in vitro and in vivo studies. Finally we describe the clinical phenotype of patients carrying these mutations.A síndrome de Kallmann (SK) é a associação de hipogonadismo hipogonadotrófico (HH) e anosmia descrita por Maestre de San Juan, em 1856, e caracterizada como condição hereditária por Franz Josef Kallmann, em 1944. Muitos aspectos de sua patogenia, variabilidade fenotípica e genotípica foram desvendados nos últimos 15 anos. Conseqüentemente, tem sido difícil manter-se atualizado frente à rapidez que o conhecimento dessa condição é gerado. Nesta revisão, resgatamos aspectos históricos pouco conhecidos sobre a síndrome e seus descobridores; incorporamos novas descobertas relacionadas à embriogênese dos neurônios olfatórios e produtores de GnRH. Esse processo é fundamental para compreender a associação de hipogonadismo e anosmia; descrevemos a heterogeneidade fenotípica e genotípica, incluindo mutações em cinco genes (KAL-1, FGFR1, PROKR2, PROK2 e NELF). Para cada gene, discutimos a função da proteína codificada na migração e maturação dos neurônios olfatórios e GnRH a partir de estudos in vitro e modelos experimentais e descrevemos características clínicas dos portadores dessas mutações.Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de MedicinaUNIFESP, EPM, Depto. de MedicinaSciEL

    Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter cellular phenotype of human glioblastoma

    Get PDF
    Clustered miRNAs can affect functioning of downstream pathways due to possible coordinated function. We observed 78-88% of the miR-379/miR-656 cluster (C14MC) miRNAs were downregulated in three sub-types of diffuse gliomas, which was also corroborated with analysis from The Cancer Genome Atlas (TCGA) datasets. The miRNA expression levels decreased with increasing tumor grade, indicating this downregulation as an early event in gliomagenesis. Higher expression of the C14MC miRNAs significantly improved glioblastioma prognosis (Pearson’s r=0.62; p<3.08e-22). ENCODE meta-data analysis, followed by reporter assays validated existence of two novel internal regulators within C14MC. CRISPR activation of the most efficient internal regulator specifically induced members of the downstream miRNA sub-cluster and apoptosis in glioblastoma cells. Luciferase assays validated novel targets for miR-134 and miR-485-5p, two miRNAs from C14MC with the most number of target genes relevant for glioma. Overexpression of miR-134 and miR-485-5p in human glioblastoma cells suppressed invasion and proliferation, respectively. Furthermore, apoptosis was induced by both miRs, individually and in combination. The results emphasize the tumor suppressive role of C14MC in diffuse gliomas, and identifies two specific miRNAs with potential therapeutic value and towards better disease management and therapy

    Sporadic Colorectal Cancer Development Shows Rejuvenescence Regarding Epithelial Proliferation and Apoptosis

    Get PDF
    Background and Aims: Sporadic colorectal cancer (CRC) development is a sequential process showing age-dependency, uncontrolled epithelial proliferation and decreased apoptosis. During juvenile growth cellular proliferation and apoptosis are well balanced, which may be perturbed upon aging. Our aim was to correlate proliferative and apoptotic activities in aging human colonic epithelium and colorectal cancer. We also tested the underlying molecular biology concerning the proliferation- and apoptosis-regulating gene expression alterations. Materials and Methods: Colorectal biopsies from healthy children (n1 = 14), healthy adults (n2 = 10), adult adenomas (n3 = 10) and CRCs (n4 = 10) in adults were tested for Ki-67 immunohistochemistry and TUNEL apoptosis assay. Mitosis- and apoptosis-related gene expression was also studied in healthy children (n1 = 6), adult (n2 = 41) samples and in CRC (n3 = 34) in HGU133plus2.0 microarray platform. Measured alterations were confirmed with RT-PCR both on dependent and independent sample sets (n1=6, n2=6, n3 = 6). Results: Mitotic index (MI) was significantly higher (p,0.05) in intact juvenile (MI = 0.3360.06) and CRC samples (MI = 0.4260.10) compared to healthy adult samples (MI = 0.1560.06). In contrast, apoptotic index (AI) was decreased in children (0.1360.06) and significantly lower in cancer (0.0660.03) compared to healthy adult samples (0.1760.05). Eight proliferation- (e.g. MKI67, CCNE1) and 11 apoptosis-associated genes (e.g. TNFSF10, IFI6) had altered mRNA expression both in the course of normal aging and carcinogenesis, mainly inducing proliferation and reducing apoptosis compared to healthy adults. Eight proliferation-associated genes including CCND1, CDK1, CDK6 and 26 apoptosis-regulating genes (e.g. SOCS3) were differently expressed between juvenile and cancer groups mostly supporting the pronounced cell growth in CRC. Conclusion: Colorectal samples from children and CRC patients can be characterized by similarly increased proliferative and decreased apoptotic activities compared to healthy colonic samples from adults. Therefore, cell kinetic alterations during colorectal cancer development show uncontrolled rejuvenescence as opposed to the controlled cell growth in juvenile colonic epithelium

    Regulation of Transcriptional Activators by DNA-Binding Domain Ubiquitination

    Get PDF
    Ubiquitin is a key component of the regulatory network that maintains gene expression in eukaryotes, yet the molecular mechanism(s) by which non-degradative ubiquitination modulates transcriptional activator (TA) function is unknown. Here endogenous p53, a stress-activated transcription factor required to maintain health, is stably monoubiquitinated, following pathway activation by IR or Nutlin-3 and localized to the nucleus where it becomes tightly associated with chromatin. Comparative structure–function analysis and in silico modelling demonstrate a direct role for DNA-binding domain (DBD) monoubiquitination in TA activation. When attached to the DBD of either p53, or a second TA IRF-1, ubiquitin is orientated towards, and makes contact with, the DNA. The contact is made between a predominantly cationic surface on ubiquitin and the anionic DNA. Our data demonstrate an unexpected role for ubiquitin in the mechanism of TA-activity enhancement and provides insight into a new level of transcriptional regulation
    corecore