3,038 research outputs found
Phase diagram of neutron-rich nuclear matter and its impact on astrophysics
Dense matter as it can be found in core-collapse supernovae and neutron stars
is expected to exhibit different phase transitions which impact the matter
composition and equation of state, with important consequences on the dynamics
of core-collapse supernova explosion and on the structure of neutron stars. In
this paper we will address the specific phenomenology of two of such
transitions, namely the crust-core solid-liquid transition at sub-saturation
density, and the possible strange transition at super-saturation density in the
presence of hyperonic degrees of freedom. Concerning the neutron star
crust-core phase transition at zero and finite temperature, it will be shown
that, as a consequence of the presence of long-range Coulomb interactions, the
equivalence of statistical ensembles is violated and a clusterized phase is
expected which is not accessible in the grand-canonical ensemble. A specific
quasi-particle model will be introduced to illustrate this anomalous
thermodynamics and some quantitative results relevant for the supernova
dynamics will be shown. The opening of hyperonic degrees of freedom at higher
densities corresponding to the neutron stars core modifies the equation of
state. The general characteristics and order of phase transitions in this
regime will be analyzed in the framework of a self-consistent mean-field
approach.Comment: Invited Talk given at the 11th International Conference on
Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1,
2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference
Series (JPCS
Microcanonical studies on isoscaling
The exponential scaling of isotopic yields is investigated for sources of
different sizes over a broad range of excitation energies and freeze-out
volumes, in both primary and asymptotic stages of the decay in the framework of
a microcanonical multifragmentation model. It was found that the scaling
parameters have a strong dependence on the considered pair of equilibrated
sources and excitation energy and are affected by the secondary particle
emission of the break-up fragments. No significant influence of the freeze-out
volume on the considered isotopic ratios has been observed. Deviations of
microcanonical results from grandcanonical expectations are discussed.Comment: 19 pages, 6 figure
Electric Field-Tuned Topological Phase Transition in Ultra-Thin Na3Bi - Towards a Topological Transistor
The electric field induced quantum phase transition from topological to
conventional insulator has been proposed as the basis of a topological field
effect transistor [1-4]. In this scheme an electric field can switch 'on' the
ballistic flow of charge and spin along dissipationless edges of the
two-dimensional (2D) quantum spin Hall insulator [5-9], and when 'off' is a
conventional insulator with no conductive channels. Such as topological
transistor is promising for low-energy logic circuits [4], which would
necessitate electric field-switched materials with conventional and topological
bandgaps much greater than room temperature, significantly greater than
proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems
in which to look for topological field-effect switching, as they lie at the
boundary between conventional and topological phases [3,10-16]. Here we use
scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved
photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS
Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the
absence of electric field. Upon application of electric field by doping with
potassium or by close approach of the STM tip, the bandgap can be completely
closed then re-opened with conventional gap greater than 100 meV. The large
bandgaps in both the conventional and quantum spin Hall phases, much greater
than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin
Na3Bi is suitable for room temperature topological transistor operation
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates
Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses.Once placed on mats,the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas.The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye.The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies,the swim bladder and muscles in fish, and the bone marrow in frog legs.This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long timeThis work, which is part of the research projects CGL2013-42643P and the research grant supporting M. Iniesto were funded by the Spanish Ministry of Economy and Competitiveness. The SEM facility at IMPMC was supported by Region Ile de France grant SESAME 2006 I-07-593/R, INSU-CNRS, INP-CNRS, and University Pierre et Marie Curie, Paris. SEM analyses performed for this study were supported by a grant from the Foundation Simone et Cino Del Duca (PI: K. Benzerara). Some SEM observations were also conducted at SIdI UAM (Madrid). Environmental SEM observations were performed at the MNCN (Madrid
Stem diameter and height of chrysanthemum cv Yoko ono as affected by gibberellic acid
The effect of gibberellic acid has been shown mainly to promote cell division and elongation. This study was aimed to evaluate the development of height and diameter of the stems of chrysanthemum cultivar Yoko ono by the applications of gibberellic acid (GA3) in the field. The treatments were composed of four doses (0, 40, 80 and 120 mg L-1) at 15 and 30 days after transplanting. From the findings, It can be concluded that GA3 significantly affected the diameter of stem at higher doses, and was unable to affect the height of stem.Key words: Dendranthema grandiflora, flowers, plant regulator, concentration
- …
