420 research outputs found

    Chemical and magnetic impurity effects on electronic properties of semiconductor quantum wires

    Full text link
    We present a theoretical study of electronic states in magnetic and nonmagnetic semiconductor quantum wires. The effects of chemical and magnetic disorder at paramagnetic temperatures are investigated in single-site coherent potential approximation. It is shown that the nonmagnetic impurity shifts the band of carriers and suppresses the van Hove singularities of the local density of states (LDOS) depending on the value of impurity concentration. The magnetic impurity, however, broadens the band which depends on the strength of exchange coupling, and in the high impurity concentration, the van Hove singularities in the LDOS can completely disappear and the curves become smooth.Comment: 7 pages, 6 figure

    Theoretical Study of Electronic Structure and Superconductivity in Nb_(1-x)B_2 Alloys

    Full text link
    Using the Korringa-Kohn-Rostoker coherent-potential approximation in the atomic-sphere approximation (KKR-ASA CPA) we have studied the changes in the electronic structure and the superconducting transition temperature T_{c} in Nb_{1-x}B_{2} alloys as a function of x. We find that the variation in the electronic structure of Nb_{1-x}B_{2} alloys as a function of x is consistent with the rigid-band model. However, the variation of T_{c}, obtained using the Allen-Dynes equation within the Gaspari-Gyorffy formalism to estimate the electron-phonon matrix elements, does not follow the expected trend. We associate this disagreement to the use of a constant \omega_{rms} in the Allen-Dynes equation over the whole range of vacancy concentration, thereby indicating the importance of lattice dynamical effects in these systems.Comment: 10 pages, 4 figure

    Self-consistent cluster CPA methods and the nested CPA theory

    Full text link
    The coherent potential approximation, CPA, is a useful tool to treat systems with disorder. Cluster theories have been proposed to go beyond the translation invariant single-site CPA approximation and include some short range correlations. In this framework one can also treat simultaneously diagonal disorder (in the site-diagonal elements of the Hamiltonian) and non-diagonal disorder (in the bond energies). It proves difficult to obtain reasonable results, free of non-analyticities, for lattices of dimension higher than one (D>1). We show electronic structure results obtained for a Hubbard model, treated in mean field approximation, on a square lattice and a simple cubic lattice, with the simultaneous inclusion of diagonal and non-diagonal disorder. We compare the results obtained using three different methods to treat the problem: a self-consistent 2-site cluster CPA method, the Blackman-Esterling-Berk single-site like extension of the CPA and a nested CPA approach.Comment: 5 pages + 2 figures, to appear in Physica B. Presented at the SCES'99 conference, Nagano, Japan (Aug.'99

    Virtual-crystal approximation that works: Locating a composition phase boundary in Pb(Zr_{1-x}Ti_3)O_3

    Full text link
    We present a new method for modeling disordered solid solutions, based on the virtual crystal approximation (VCA). The VCA is a tractable way of studying configurationally disordered systems; traditionally, the potentials which represent atoms of two or more elements are averaged into a composite atomic potential. We have overcome significant shortcomings of the standard VCA by developing a potential which yields averaged atomic properties. We perform the VCA on a ferroelectric oxide, determining the energy differences between the high-temperature rhombohedral, low-temperature rhombohedral and tetragonal phases of Pb(Zr_{1-x}Ti_x)O_3 at x=0.5 and comparing these results to superlattice calculations and experiment. We then use our new method to determine the preferred structural phase at x=0.4. We find that the low-temperature rhombohedral phase becomes the ground state at x=0.4, in agreement with experimental findings.Comment: 5 pages, no figure

    Conservation of the spectral moments in the n-pole approximation

    Full text link
    A formulation of the Green's function method is presented in the n-pole approximation. Without referring to a specific model we give a general scheme of calculations that easily permits the computation of the "single-particle" Green's function in terms of the energy matrix. A theorem is proved which states that the moments of the spectral density function are conserved up to the order 2(n-l+1), where l is the order of the composite field. A comparison with the spectral density approach is also discussed.Comment: 12 pages, RevTe

    Experimental studies of triplet exciton bands of molecular crystals

    Get PDF
    Methods of studying properties of triplet exciton states of organic crystals are presented with an emphasis on exposing the dimensionality of excitons. Results of isotopic replacement spectra for 1,4-dibromonaphthalene which is a linear chain, and for halogenated benzenes, which are likely to be linear chains, are presented. Luminescence studies of linear chain exciton systems are shown to yield information about the stationary states of small clusters. Finally some preliminary studies of two-photon spectra of naphthalene excitons are described

    On wave propagation in inhomogeneous systems

    Full text link
    We present a theory of electron, electromagnetic, and elastic wave propagation in systems consisting of non-overlapping scatterers in a host medium. The theory provides a framework for a unified description of wave propagation in three-dimensional periodic structures, finite slabs of layered structures, and systems with impurities: isolated impurities, impurity aggregates, or randomly distributed impurities. We point out the similarities and differences between the different cases considered, and discuss the numerical implementation of the formalism.Comment: 12 page

    First-principles Calculation of the Formation Energy in MgO-CaO Solid Solutions

    Full text link
    The electronic structure and total energy were calculated for ordered and disordered MgO-CaO solid solutions within the multiple scattering theory in real space and the local density approximation. Based on the dependence of the total energy on the unit cell volume the equilibrium lattice parameter and formation energy were determined for different solution compositions. The formation energy of the solid solutions is found to be positive that is in agreement with the experimental phase diagram, which shows a miscibility gap.Comment: 11 pages, 3 figure

    Approximation of excitonic absorption in disordered systems using a compositional component weighted CPA

    Full text link
    Employing a recently developed technique of component weighted two particle Green's functions in the CPA of a binary substitutional alloy AcB1cA_cB_{1-c} we extend the existing theory of excitons in such media using a contact potential model for the interaction between electrons and holes to an approximation which interpolates correctly between the limits of weak and strong disorder. With our approach we are also able to treat the case where the contact interaction between carriers varies between sites of different types, thus introducing further disorder into the system. Based on this approach we study numerically how the formation of exciton bound states changes as the strengths of the contact potentials associated with either of the two site types are varied through a large range of parameter values.Comment: 27 pages RevTeX (preprint format), 13 Postscript figure file
    corecore