1,871 research outputs found
Chronic myeloid leukemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up †
General purpose readout board {\pi} LUP: overview and results
This work gives an overview of the PCI-Express board LUP, focusing on
the motivation that led to its development, the technological choices adopted
and its performance. The LUP card was designed by INFN and University of
Bologna as a readout interface candidate to be used after the Phase-II upgrade
of the Pixel Detector of the ATLAS and CMS experiments at LHC. The same team in
Bologna is also responsible for the design and commissioning of the ReadOut
Driver (ROD) board - currently implemented in all the four layers of the ATLAS
Pixel Detector (Insertable B-Layer, B-Layer, Layer-1 and Layer-2) - and
acquired in the past years expertise on the ATLAS readout chain and the
problematics arising in such experiments. Although the LUP was designed to
fulfill a specific task, it is highly versatile and might fit a wide variety of
applications, some of which will be discussed in this work. Two
7-generation Xilinx FPGAs are mounted on the board: a Zynq-7 with an
embedded dual core ARM Processor and a Kintex-7. The latter features sixteen
12.5Gbps transceivers, allowing the board to interface easily to any other
electronic board, either electrically and/or optically, at the current
bandwidth of the experiments for LHC. Many data-transmission protocols have
been tested at different speeds, results will be discussed later in this work.
Two batches of LUP boards have been fabricated and tested, two boards in
the first batch (version 1.0) and four boards in the second batch (version
1.1), encapsulating all the patches and improvements required by the first
version.Comment: 6 pages, 10 figures, 21th Real Time Conference, winner of "2018 NPSS
Student Paper Award Second Prize
Studying the impact of presence of alpha acid glycoprotein and protein glycoprotein in chronic myeloid leukemia patients treated with imatinib mesylate in the State of Qatar
Despite the efficacy of imatinib mesylate (IM) in treating chronic myeloid leukemia (CML), there is a high degree of resistance. Alpha- 1-acid glycoprotein may reduce drug efficacy through its ability to interact with IM and blocks it from reaching its target, while protein glycoprotein (PGP) may reduce the intracellular concentration of the drug via an active pump mechanism. We thus investigated the correlation between AGP and PGP levels and the resistance/response to treatment. A total of 26 CML patients were investigated for AGP and PGP levels at diagnosis and during treatment. There was no significant difference or correlation between AGP levels and the different groups of patients. There was also no significant difference in the fluorescence intensities of PGP levels among the different patient groups. The resistance observed in our CML patient population could not be correlated with AGP and PGP levels. There was no significant pattern of AGP and PGP expression, irrespective of the response or resistance to treatment
BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase
BCR-ABL1 mutations are a common, well-characterized mechanism of resistance to imatinib as first-line treatment of chronic myeloid leukemia in chronic phase (CML-CP). Less is known about mutation development during first-line treatment with dasatinib and nilotinib, despite increased use because of higher response rates compared with imatinib. Retrospective analyses were conducted to characterize mutation development in patients with newly diagnosed CML-CP treated with dasatinib (n=259) or imatinib (n=260) in DASISION (Dasatinib versus Imatinib Study in Treatment-Naive CML-CP), with 3-year minimum follow-up. Mutation screening, including patients who discontinued treatment and patients who had a clinically relevant on-treatment event (no confirmed complete cytogenetic response (cCCyR) and no major molecular response (MMR) within 12 months; fivefold increase in BCR-ABL1 with loss of MMR; loss of CCyR), yielded a small number of patients with mutations (dasatinib, n=17; imatinib, n=18). Dasatinib patients had a narrower spectrum of mutations (4 vs 12 sites for dasatinib vs imatinib), fewer phosphate-binding loop mutations (1 vs 9 mutations), fewer multiple mutations (1 vs 6 patients) and greater occurrence of T315I (11 vs 0 patients). This trial was registered at www.clinicaltrials.gov as NCT00481247.T P Hughes, G Saglio, A Quintás-Cardama, M J Mauro, D-W Kim, J H Lipton6, M B Bradley-Garelik, J Ukropec and A Hochhau
Management of imatinib-resistant CML patients
Imatinib has had marked impact on outcomes in chronic myelogenous leukemia (CML) patients for all stages of the disease and is endorsed by international treatment guidelines as the first line option. Although imatinib is highly effective and well tolerated, the development of resistance represents a clinical challenge. Since the most frequently identified mechanism of acquired imatinib resistance is bcr-abl kinase domain point mutations, periodic hematologic, cytogenetic, and molecular monitoring is critical throughout imatinib therapy. Once cytogenetic remission is achieved, residual disease can be monitored by bcr-abl transcript levels as assayed by reverse transcription polymerase chain reaction (RT-PCR). Detection of bcr-abl mutants prior to and during imatinib therapy can aid in risk stratification as well as in determining therapeutic strategies. Thus, mutation screening is indicated in patients lacking or losing hematologic response. Moreover, search for mutations should also be performed when a 3-log reduction of bcr-abl transcripts is not achieved or there is a reproducible increase of transcript levels. In patients harboring mutations which confer imatinib resistance, novel second line tyrosine kinase inhibitors have demonstrated encouraging efficacy with low toxicity. Only the T315I bcr-abl mutant has proved totally resistant to all clinically available bcr-abl inhibitors. Strategies to further increase the rates of complete molecular remissions represent the next frontier in the targeted therapy of CML patients
A novel framework for chimeric transcript detection based on accurate gene fusion model
Next generation sequencing plays a key role in the detection of structural variations. Chimeric transcripts are relevant examples of such variations, as they are involved in several diseases. In this work, we propose an effective methodology for the detection of fused transcripts in RNA-Seq paired-end data. The proposed methodology is based on an accurate fusion model implemented by a set of filters reducing the impact of artifacts. Moreover, the methodology accounts for transcripts consistently expressing in the sample under study even if they are not annotated. The effectiveness of the proposed solution has been experimentally validated on of Chronic Myelogenous Leukemia (CML) samples, providing both the genes involved in the fusion and the exact chimeric sequence. \ua9 2011 IEEE
The clonal evolution of two distinct T315I-positive BCR-ABL1 subclones in a Philadelphia-positive acute lymphoblastic leukemia failing multiple lines of therapy: a case report
BACKGROUND:
The treatment of Philadelphia chromosome-positive Acute Lymphoblastic Leukemia (Ph+ ALL) patients who harbor the T315I BCR-ABL1 mutation or who have two or more mutations in the same BCR-ABL1 molecule is particularly challenging since first and second-generation Tyrosine Kinase Inhibitors (TKIs) are ineffective. Ponatinib, blinatumomab, chemotherapy and transplant are the currently available options in these cases.
CASE PRESENTATION:
We here report the case of a young Ph+ ALL patient who relapsed on front-line dasatinib therapy because of two independent T315I-positive subclones, resulting from different nucleotide substitutions -one of whom never reported previously- and where additional mutant clones outgrew and persisted despite ponatinib, transplant, blinatumomab and conventional chemotherapy. Deep Sequencing (DS) was used to dissect the complexity of BCR-ABL1 kinase domain (KD) mutation status and follow the kinetics of different mutant clones across the sequential therapeutic approaches.
CONCLUSIONS:
This case presents several peculiar and remarkable aspects: i) distinct clones may acquire the same amino acid substitution via different nucleotide changes; ii) the T315I mutation may arise also from an 'act' to 'atc' codon change; iii) the strategy of temporarily replacing TKI therapy with chemo or immunotherapy, in order to remove the selective pressure and deselect aggressive mutant clones, cannot always be expected to be effective; iv) BCR-ABL1-mutated sub-clones may persist at very low levels (undetectable even by Deep Sequencing) for long time and then outcompete BCR-ABL1-unmutated ones becoming dominant even in the absence of any TKI selective pressure
The qwest of the welfare state: an index to measure universality of welfare states, a 1990-2019 overview and comparative analysis
This thesis provides an analysis of the degree of universalism of different welfare states. Three
categories of the welfare state have already been defined (Esping-Andersen 1990): the social democratic welfare state, typical of Scandinavia, the corporatist model, typical of continental
Europe, and the liberal model, typical of the Anglo-Saxon countries. In this thesis, a fourth
category will be included: the Southern Europe model, as proposed by several authors. To
measure the degree of universalism of the different welfare states a composite index called
QWEST is used. The “Quality of Welfare State” index estimates the degree of universalism
through seven variables
Characterization of 46 patient-specific BCR-ABL1 fusions and detection of SNPs upstream and downstream the breakpoints in chronic myeloid leukemia using next generation sequencing
In chronic myeloid leukemia, the identification of individual BCR-ABL1 fusions is required for the development of personalized medicine approach for minimal residual disease monitoring at the DNA level. Next generation sequencing (NGS) of amplicons larger than 1000 bp simplified and accelerated a process of characterization of patient-specific BCR-ABL1 genomic fusions. NGS of large regions upstream and downstream the individual breakpoints in BCR and ABL1 genes, respectively, also provided information about the sequence variants such are single nucleotide polymorphisms
- …
