3,256 research outputs found
Lower limit for differential rotation in members of young loose stellar associations
Surface differential rotation (SDR) plays a key role in dynamo models. SDR
estimates are therefore essential for constraining theoretical models. We
measure a lower limit to SDR in a sample of solar-like stars belonging to young
associations with the aim of investigating how SDR depends on global stellar
parameters in the age range (4-95 Myr). The rotation period of a solar-like
star can be recovered by analyzing the flux modulation caused by dark spots and
stellar rotation. The SDR and the latitude migration of dark-spots induce a
modulation of the detected rotation period. We employ long-term photometry to
measure the amplitude of such a modulation and to compute the quantity
DeltaOmega_phot =2p/P_min -2pi/P_max that is a lower limit to SDR. We find that
DeltaOmega_phot increases with the stellar effective temperature and with the
global convective turn-over time-scale tau_c. We find that DeltaOmega_phot is
proportional to Teff^2.18pm 0.65 in stars recently settled on the ZAMS. This
power law is less steep than those found by previous authors, but closest to
recent theoretical models. We find that DeltaOmega_phot steeply increases
between 4 and 30 Myr and that itis almost constant between 30 and 95 Myr in a 1
M_sun star. We find also that the relative shear increases with the Rossby
number Ro. Although our results are qualitatively in agreement with
hydrodynamical mean-field models, our measurements are systematically higher
than the values predicted by these models. The discrepancy between
DeltaOmega_phot measurements and theoretical models is particularly large in
stars with periods between 0.7 and 2 d. Such a discrepancy, together with the
anomalous SDR measured by other authors for HD 171488 (rotating in 1.31 d),
suggests that the rotation period could influence SDR more than predicted by
the models.Comment: 23 pages, 15 figures, 5 tables,accepted by Astronomy and Astrophysic
Activity cycles in members of young loose stellar associations
Magnetic cycles have been detected in tens of solar-like stars. The
relationship between the cycle properties and global stellar parameters is not
fully understood yet.
We searched for activity cycles in 90 solar-like stars with ages between 4
and 95 Myr aiming to investigate the properties of activity cycles in this age
range.
We measured the length of a given cycle by analyzing the long-term
time-series of three activity indexes. For each star, we computed also the
global magnetic activity index that is proportional to the amplitude of
the rotational modulation and is a proxy of the mean level of the surface
magnetic activity. We detected activity cycles in 67 stars. Secondary cycles
were also detected in 32 stars. The lack of correlation between and
suggest that these stars belong to the Transitional Branch and that
the dynamo acting in these stars is different from the solar one. This
statement is also supported by the analysis of the butterfly diagrams.
We computed the Spearman correlation coefficient between ,
and different stellar parameters. We found that is
uncorrelated with all the investigated parameters. The index is
positively correlated with the convective turn-over time-scale, the magnetic
diffusivity time-scale , and the dynamo number , whereas
it is anti-correlated with the effective temperature , the
photometric shear and the radius at which
the convective zone is located.
We found that is about constant and that decreases with the
stellare age in the range 4-95 Myr. We investigated the magnetic activity of AB
Dor A by merging ASAS time-series with previous long-term photometric data. We
estimated the length of the AB Dor A primary cycle as .Comment: 19 pages , 15 figures, accepte
Lithium abundance and 6Li/7Li ratio in the active giant HD123351 I. A comparative analysis of 3D and 1D NLTE line-profile fits
Current three-dimensional (3D) hydrodynamical model atmospheres together with
NLTE spectrum synthesis, permit to derive reliable atomic and isotopic chemical
abundances from high-resolution stellar spectra. Not much is known about the
presence of the fragile 6Li isotope in evolved solar-metallicity RGB stars, not
to mention its production in magnetically active targets like HD123351. From
fits of the observed CFHT spectrum with synthetic line profiles based on 1D and
3D model atmospheres, we seek to estimate the abundance of the 6Li isotope and
to place constraints on its origin. We derive A(Li) and the 6Li/7Li isotopic
ratio by fitting different synthetic spectra to the Li-line region of a
high-resolution CFHT spectrum (R=120 000, S/R=400). The synthetic spectra are
computed with four different line lists, using in parallel 3D hydrodynamical
CO5BOLD and 1D LHD model atmospheres and treating the line formation of the
lithium components in non-LTE (NLTE). We find A(Li)=1.69+/-0.11 dex and
6Li/7Li=8.0+/-4.4 % in 3D-NLTE, using the line list of Mel\'endez et al.
(2012), updated with new atomic data for V I, which results in the best fit of
the lithium line profile of HD123351. Two other line lists lead to similar
results but with inferior fit qualities. Our 2-sigma detection of the 6Li
isotope is the result of a careful statistical analysis and the visual
inspection of each achieved fit. Since the presence of a significant amount of
6Li in the atmosphere of a cool evolved star is not expected in the framework
of standard stellar evolution theory, non-standard, external lithium production
mechanisms, possibly related to stellar activity or a recent accretion of rocky
material, need to be invoked to explain the detection of 6Li in HD123351.Comment: 16 pages, 11 figures. Accepted for publication in A&
PEPSI deep spectra. III. A chemical analysis of the ancient planet-host star Kepler-444
We obtained an LBT/PEPSI spectrum with very high resolution and high
signal-to-noise ratio (S/N) of the K0V host Kepler-444, which is known to host
5 sub-Earth size rocky planets. The spectrum has a resolution of R=250,000, a
continuous wavelength coverage from 4230 to 9120A, and S/N between 150 and
550:1 (blue to red). We performed a detailed chemical analysis to determine the
photospheric abundances of 18 chemical elements, in order to use the abundances
to place constraints on the bulk composition of the five rocky planets. Our
spectral analysis employs the equivalent width method for most of our spectral
lines, but we used spectral synthesis to fit a small number of lines that
require special care. In both cases, we derived our abundances using the MOOG
spectral analysis package and Kurucz model atmospheres. We find no correlation
between elemental abundance and condensation temperature among the refractory
elements. In addition, using our spectroscopic stellar parameters and isochrone
fitting, we find an age of 10+/-1.5 Gyr, which is consistent with the
asteroseismic age of 11+/-1 Gyr. Finally, from the photospheric abundances of
Mg, Si, and Fe, we estimate that the typical Fe-core mass fraction for the
rocky planets in the Kepler-444 system is approximately 24 per cent. If our
estimate of the Fe-core mass fraction is confirmed by more detailed modeling of
the disk chemistry and simulations of planet formation and evolution in the
Kepler-444 system, then this would suggest that rocky planets in more
metal-poor and alpha-enhanced systems may tend to be less dense than their
counterparts of comparable size in more metal-rich systems.Comment: in press, 11 pages, 3 figures, data available from pepsi.aip.d
Efficiency and spectrum of internal gamma-ray burst shocks
We present an analysis of the Internal Shock Model of GRBs, where gamma-rays
are produced by internal shocks within a relativistic wind. We show that
observed GRB characteristics impose stringent constraints on wind and source
parameters. We find that a significant fraction, of order 20 %, of the wind
kinetic energy can be converted to radiation, provided the distribution of
Lorentz factors within the wind has a large variance and provided the minimum
Lorentz factor is higher than 10^(2.5)L_(52)^(2/9), where L=10^(52)L_(52)erg/s
is the wind luminosity. For a high, >10 %, efficiency wind, spectral energy
breaks in the 0.1 to 1 MeV range are obtained for sources with dynamical time
R/c < 1 ms, suggesting a possible explanation for the observed clustering of
spectral break energies in this range. The lower limit to wind Lorenz factor
and the upper limit, around (R/10^7 cm)^(-5/6) MeV to observed break energies
are set by Thomson optical depth due to electron positron pairs produced by
synchrotron photons. Natural consequences of the model are absence of bursts
with peak emission energy significantly exceeding 1 MeV, and existence of low
luminosity bursts with low, 1 keV to 10 keV, break energies.Comment: 10 pages, 5 ps-figures. Expanded discussion of magnetic field and
electron energy fraction. Accepted for publication in Astrophysical Journa
Challenges in Dental Statistics: Survey Methodology Topics
This paper gathers some contributions concerning survey methodology in dental research, as discussed during the first Workshop of the SISMEC STATDENT working group on statistical methods and applications in dentistry, held in Ancona on the 28th September 2011.
The first contribution deals with the European Global Oral Health Indicators Development (EGOHID) Project which proposed a comprehensive and standardized system of epidemiological tools (questionnaires and clinical forms) for national data collection on oral health in Europe. The second contribution regards the design and conduct of trials to evaluate the clinical efficacy and safety of toothbrushes and mouthrinses. Finally, a flexible and effective tool used to trace dental age reference charts tailored to Italian children was presented
Global DNA hypomethylation prevents consolidation of differentiation programs and allows reversion to the embryonic stem cell state.
DNA methylation patterns change dynamically during mammalian development and lineage specification, yet scarce information is available about how DNA methylation affects gene expression profiles upon differentiation. Here we determine genome-wide transcription profiles during undirected differentiation of severely hypomethylated (Dnmt1⁻/⁻) embryonic stem cells (ESCs) as well as ESCs completely devoid of DNA methylation (Dnmt1⁻/⁻;Dnmt3a⁻/⁻;Dnmt3b⁻/⁻ or TKO) and assay their potential to transit in and out of the ESC state. We find that the expression of only few genes mainly associated with germ line function and the X chromosome is affected in undifferentiated TKO ESCs. Upon initial differentiation as embryoid bodies (EBs) wild type, Dnmt1⁻/⁻ and TKO cells downregulate pluripotency associated genes and upregulate lineage specific genes, but their transcription profiles progressively diverge upon prolonged EB culture. While Oct4 protein levels are completely and homogeneously suppressed, transcription of Oct4 and Nanog is not completely silenced even at late stages in both Dnmt1⁻/⁻ and TKO EBs. Despite late wild type and Dnmt1⁻/⁻ EBs showing a much higher degree of concordant expression, after EB dissociation and replating under pluripotency promoting conditions both Dnmt1⁻/⁻ and TKO cells, but not wild type cells rapidly revert to expression profiles typical of undifferentiated ESCs. Thus, while DNA methylation seems not to be critical for initial activation of differentiation programs, it is crucial for permanent restriction of developmental fate during differentiation
Internal shocks in relativistic outflows: collisions of magnetized shells
(Abridged): We study the collision of magnetized irregularities (shells) in
relativistic outflows in order to explain the origin of the generic
phenomenology observed in the non-thermal emission of both blazars and
gamma-ray bursts. We focus on the influence of the magnetic field on the
collision dynamics, and we further investigate how the properties of the
observed radiation depend on the strength of the initial magnetic field and on
the initial internal energy density of the flow. The collisions of magnetized
shells and the radiation resulting from these collisions are calculated using
the 1D relativistic magnetohydrodynamics code MRGENESIS. The interaction of the
shells with the external medium prior to their collision is also determined
using an exact solver for the corresponding 1D relativistic magnetohydrodynamic
Riemann problem. Our simulations show that two magnetization parameters - the
ratio of magnetic energy density and thermal energy density, \alpha_B, and the
ratio of magnetic energy density and mass-energy density, \sigma - play an
important role in the pre-collision phase, while the dynamics of the collision
and the properties of the light curves depend mostly on the magnetization
parameter \sigma. The interaction of the shells with the external medium
changes the flow properties at their edges prior to the collision. For
sufficiently dense shells moving at large Lorentz factors (\simgt 25) these
properties depend only on the magnetization parameter \sigma. Internal shocks
in GRBs may reach maximum efficiencies of conversion of kinetic into thermal
energy between 6% and 10%, while in case of blazars, the maximum efficiencies
are \sim 2%.Comment: 17 pages, 18 figures. 2 new references have been added. Accepted for
publication in Astronomy and Astrophysic
Total orthotopic small bowel transplantation in swine under FK 506
Previous experimental studies in rodents and in dogs have established the efficacy of FK 506 in controlling the immunologic events following small bowel or multivisceral transplantation.1–5 To complete the assessment of FK 506 in experimental small bowel transplantation, we present here our experience with the frequently used swine model
- …
