41 research outputs found

    Inflationary potentials in DBI models

    Full text link
    We study DBI inflation based upon a general model characterized by a power-law flow parameter ϵ(ϕ)ϕα\epsilon(\phi)\propto\phi^{\alpha} and speed of sound cs(ϕ)ϕβc_s(\phi)\propto\phi^{\beta}, where α\alpha and β\beta are constants. We show that in the slow-roll limit this general model gives rise to distinct inflationary classes according to the relation between α\alpha and β\beta and to the time evolution of the inflaton field, each one corresponding to a specific potential; in particular, we find that the well-known canonical polynomial (large- and small-field), hybrid and exponential potentials also arise in this non-canonical model. We find that these non-canonical classes have the same physical features as their canonical analogs, except for the fact that the inflaton field evolves with varying speed of sound; also, we show that a broad class of canonical and D-brane inflation models are particular cases of this general non-canonical model. Next, we compare the predictions of large-field polynomial models with the current observational data, showing that models with low speed of sound have red-tilted scalar spectrum with low tensor-to-scalar ratio, in good agreement with the observed values. These models also show a correlation between large non-gaussianity with low tensor amplitudes, which is a distinct signature of DBI inflation with large-field polynomial potentials.Comment: Minor changes, reference added. Version submitted to JCA

    Non-canonical generalizations of slow-roll inflation models

    Full text link
    We consider non-canonical generalizations of two classes of simple single-field inflation models. First, we study the non-canonical version of "ultra-slow roll" inflation, which is a class of inflation models for which quantum modes do not freeze at horizon crossing, but instead evolve rapidly on superhorizon scales. Second, we consider the non-canonical generalization of the simplest "chaotic" inflation scenario, with a potential dominated by a quartic (mass) term for the inflaton. We find a class of related non-canonical solutions with polynomial potentials, but with varying speed of sound. These solutions are characterized by a constant field velocity, and we dub such models {\it isokinetic} inflation. As in the canonical limit, isokinetic inflation has a slightly red-tilted power spectrum, consistent with current data. Unlike the canonical case, however, these models can have an arbitrarily small tensor/scalar ratio. Of particular interest is that isokinetic inflation is marked by a correlation between the tensor/scalar ratio and the amplitude of non-Gaussianity such that parameter regimes with small tensor/scalar ratio have {\it large} associated non-Gaussianity, which is a distinct observational signature.Comment: 12 pages, 3 figures, LaTeX; V2: version submitted to JCAP. References adde

    Constraining non-minimally coupled tachyon fields by Noether symmetry

    Full text link
    A model for a spatially flat homogeneous and isotropic Universe whose gravitational sources are a pressureless matter field and a tachyon field non-minimally coupled to the gravitational field is analyzed. Noether symmetry is used to find the expressions for the potential density and for the coupling function, and it is shown that both must be exponential functions of the tachyon field. Two cosmological solutions are investigated: (i) for the early Universe whose only source of the gravitational field is a non-minimally coupled tachyon field which behaves as an inflaton and leads to an exponential accelerated expansion and (ii) for the late Universe whose gravitational sources are a pressureless matter field and a non-minimally coupled tachyon field which plays the role of dark energy and is the responsible of the decelerated-accelerated transition period.Comment: 11 pages, 5 figures. Version accepted for publication in Classical and Quantum Gravit

    Tensors, non-Gaussianities, and the future of potential reconstruction

    Full text link
    We present projections for reconstruction of the inflationary potential expected from ESA's upcoming Planck Surveyor CMB mission. We focus on the effects that tensor perturbations and the presence of non-Gaussianities have on reconstruction efforts in the context of non-canonical inflation models. We consider potential constraints for different combinations of detection/null-detection of tensors and non-Gaussianities. We perform Markov Chain Monte Carlo and flow analyses on a simulated Planck-precision data set to obtain constraints. We find that a failure to detect non-Gaussianities precludes a successful inversion of the primordial power spectrum, greatly affecting uncertainties, even in the presence of a tensor detection. In the absence of a tensor detection, while unable to determine the energy scale of inflation, an observable level of non-Gaussianities provides correlations between the errors of the potential parameters, suggesting that constraints might be improved for suitable combinations of parameters. Constraints are optimized for a positive detection of both tensors and non-Gaussianities.Comment: 12 pages, 5 figures, LaTeX; V2: version submitted to JCA

    DBI Inflation using a One-Parameter Family of Throat Geometries

    Full text link
    We demonstrate the possibility of examining cosmological signatures in the DBI inflation setup using the BGMPZ solution, a one-parameter family of geometries for the warped throat which interpolate between the Maldacena-Nunez and Klebanov-Strassler solutions. The warp factor is determined numerically and subsequently used to calculate cosmological observables including the scalar and tensor spectral indices, for a sample point in the parameter space. As one moves away from the KS solution for the throat the warp factor is qualitatively different, which leads to a significant change for the observables, but also generically increases the non-Gaussianity of the models. We argue that the different models can potentially be differentiated by current and future experiments.Comment: 17 pages, 10 figures; v2: section 4 expanded, references added; v3: typos fixe

    Higher Dimensional Cosmology with Some Dark Energy Models in Emergent, Logamediate and Intermediate Scenarios of the Universe

    Full text link
    We have considered N-dimensional Einstein field equations in which four-dimensional space-time is described by a FRW metric and that of extra dimensions by an Euclidean metric. We have chosen the exponential forms of scale factors a and d numbers of b in such a way that there is no singularity for evolution of the higher dimensional Universe. We have supposed that the Universe is filled with K-essence, Tachyonic, Normal Scalar Field and DBI-essence. Here we have found the nature of potential of different scalar field and graphically analyzed the potentials and the fields for three scenario namely Emergent Scenario, Logamediate Scenario and Intermediate Scenario. Also graphically we have depicted the geometrical parameters named statefinder parameters and slow-roll parameters in the higher dimensional cosmology with the above mentioned scenarios.Comment: 21 pages, 36 figure

    Higher Structures in M-Theory

    Get PDF
    The key open problem of string theory remains its non-perturbative completion to M-theory. A decisive hint to its inner workings comes from numerous appearances of higher structures in the limits of M-theory that are already understood, such as higher degree flux fields and their dualities, or the higher algebraic structures governing closed string field theory. These are all controlled by the higher homotopy theory of derived categories, generalised cohomology theories, and LL_\infty-algebras. This is the introductory chapter to the proceedings of the LMS/EPSRC Durham Symposium on Higher Structures in M-Theory. We first review higher structures as well as their motivation in string theory and beyond. Then we list the contributions in this volume, putting them into context.Comment: 22 pages, Introductory Article to Proceedings of LMS/EPSRC Durham Symposium Higher Structures in M-Theory, August 2018, references update

    Chasing Brane Inflation in String-Theory

    Full text link
    We investigate the embedding of brane anti-brane inflation into a concrete type IIB string theory compactification with all moduli fixed. Specifically, we are considering a D3-brane, whose position represents the inflaton ϕ\phi, in a warped conifold throat in the presence of supersymmetrically embedded D7-branes and an anti D3-brane localized at the tip of the warped conifold cone. After presenting the moduli stabilization analysis for a general D7-brane embedding, we concentrate on two explicit models, the Ouyang and the Kuperstein embeddings. We analyze whether the forces, induced by moduli stabilization and acting on the D3-brane, might cancel by fine-tuning such as to leave us with the original Coulomb attraction of the anti D3-brane as the driving force for inflation. For a large class of D7-brane embeddings we obtain a negative result. Cancelations are possible only for very small intervals of ϕ\phi around an inflection point but not globally. For the most part of its motion the inflaton then feels a steep, non slow-roll potential. We study the inflationary dynamics induced by this potential.Comment: 34 pages, 4 figures. Final version published in JCA
    corecore