191 research outputs found
Photonic integration enabling new multiplexing concepts in optical board-to-board and rack-to-rack interconnects
New broadband applications are causing the datacenters to proliferate, raising the bar for higher interconnection speeds. So far, optical board-to-board and rack-to-rack interconnects relied primarily on low-cost commodity optical components assembled in a single package. Although this concept proved successful in the first generations of optical-interconnect modules, scalability is a daunting issue as signaling rates extend beyond 25 Gb/s. In this paper we present our work towards the development of two technology platforms for migration beyond Infiniband enhanced data rate (EDR), introducing new concepts in board-to-board and rack-to-rack interconnects.
The first platform is developed in the framework of MIRAGE European project and relies on proven VCSEL technology, exploiting the inherent cost, yield, reliability and power consumption advantages of VCSELs. Wavelength multiplexing, PAM-4 modulation and multi-core fiber (MCF) multiplexing are introduced by combining VCSELs with integrated Si and glass photonics as well as BiCMOS electronics. An in-plane MCF-to-SOI interface is demonstrated, allowing coupling from the MCF cores to 340x400 nm Si waveguides. Development of a low-power VCSEL driver with integrated feed-forward equalizer is reported, allowing PAM-4 modulation of a bandwidth-limited VCSEL beyond 25 Gbaud.
The second platform, developed within the frames of the European project PHOXTROT, considers the use of modulation formats of increased complexity in the context of optical interconnects. Powered by the evolution of DSP technology and towards an integration path between inter and intra datacenter traffic, this platform investigates optical interconnection system concepts capable to support 16QAM 40GBd data traffic, exploiting the advancements of silicon and polymer technologies
The Date of the Illustrations of the Psalter Dionysiu 65 (pl. 94-99)
Μη διαθέσιμη περίληψηNo abstract (available).
Implementation of advanced beam abort algorithms and electronics for the ATLAS diamond beam conditions monitor (BCM)
PAM-4 and duobinary direct modulation of a hybrid InP/SOI DFB laser for 40 Gb/s transmission over 2 km single mode fiber
We demonstrate 40 Gb/s PAM-4 and Duobinary direct modulation of a heterogeneously integrated InP on SOI DFB laser. Transmission measurement was performed using a 2 km NZ-DSF with a PRBS 2(15) and 1.5 V-pp swing voltage
High speed direct modulation of a heterogeneously integrated InP/SOI DFB laser
An integrated laser source to a silicon photonics circuit is an important requirement for optical interconnects. We present direct modulation of a heterogeneously integrated distributed feedback laser on and coupled to a silicon waveguide. We demonstrate a 28 Gb/s pseudo-random bit sequence non-return-to-zero data transmission over 2 km non-zero dispersion shifted fiber with a 1-dB power penalty. Additionally, we show 40-Gb/s duobinary modulation generated using the bandwidth limitation of the laser for both back-to-back and fiber transmission configurations. Furthermore, we investigate the device performance for the pulse amplitude modulation (PAM-4) at 20 GBd for high-speed short-reach applications
Assessment of General Practitioners' Performance in Daily Practice: The EURACT Performance Agenda of General Practice/Family Medicine
- …
