880 research outputs found
Bond formation and slow heterogeneous dynamics in adhesive spheres with long--ranged repulsion: Quantitative test of Mode Coupling Theory
A colloidal system of spheres interacting with both a deep and narrow
attractive potential and a shallow long-ranged barrier exhibits a prepeak in
the static structure factor. This peak can be related to an additional
mesoscopic length scale of clusters and/or voids in the system. Simulation
studies of this system have revealed that it vitrifies upon increasing the
attraction into a gel-like solid at intermediate densities. The dynamics at the
mesoscopic length scale corresponding to the prepeak represents the slowest
mode in the system. Using mode coupling theory with all input directly taken
from simulations, we reveal the mechanism for glassy arrest in the system at
40% packing fraction. The effects of the low-q peak and of polydispersity are
considered in detail. We demonstrate that the local formation of physical bonds
is the process whose slowing down causes arrest.
It remains largely unaffected by the large-scale heterogeneities, and sets
the clock for the slow cluster mode. Results from mode-coupling theory without
adjustable parameters agree semi-quantitatively with the local density
correlators but overestimate the lifetime of the mesoscopic structure (voids).Comment: 10 pages, 8 figure
Critical Decay at Higher-Order Glass-Transition Singularities
Within the mode-coupling theory for the evolution of structural relaxation in
glass-forming systems, it is shown that the correlation functions for density
fluctuations for states at A_3- and A_4-glass-transition singularities can be
presented as an asymptotic series in increasing inverse powers of the logarithm
of the time t: , where
with p_n denoting some polynomial and x=ln (t/t_0). The results are
demonstrated for schematic models describing the system by solely one or two
correlators and also for a colloid model with a square-well-interaction
potential.Comment: 26 pages, 7 figures, Proceedings of "Structural Arrest Transitions in
Colloidal Systems with Short-Range Attractions", Messina, Italy, December
2003 (submitted
Nearly-logarithmic decay in the colloidal hard-sphere system
Nearly-logarithmic decay is identified in the data for the mean-squared
displacement of the colloidal hard-sphere system at the liquid-glass transition
[v. Megen et. al, Phys. Rev. E 58, 6073(1998)]. The solutions of mode-coupling
theory for the microscopic equations of motion fit the experimental data well.
Based on these equations, the nearly-logarithmic decay is explained as the
equivalent of a beta-peak phenomenon, a manifestation of the critical
relaxation when the coupling between of the probe variable and the density
fluctuations is strong. In an asymptotic expansion, a Cole-Cole formula
including corrections is derived from the microscopic equations of motion,
which describes the experimental data for three decades in time.Comment: 4 pages, 3 figure
Evolution of unoccupied resonance during the synthesis of a silver dimer on Ag(111)
Silver dimers were fabricated on Ag(111) by single-atom manipulation using
the tip of a cryogenic scanning tunnelling microscope. An unoccupied electronic
resonance was observed to shift toward the Fermi level with decreasing
atom-atom distance as monitored by spatially resolved scanning tunnelling
spectroscopy. Density functional calculations were used to analyse the
experimental observations and revealed that the coupling between the adsorbed
atoms is predominantly direct rather than indirect via the Ag(111) substrate.Comment: 9 pages, 3 figure
Glass glass transition and new dynamical singularity points in an analytically solvable p-spin glass like model
We introduce and analytically study a generalized p-spin glass like model
that captures some of the main features of attractive glasses, recently found
by Mode Coupling investigations, such as a glass/glass transition line and
dynamical singularity points characterized by a logarithmic time dependence of
the relaxation. The model also displays features not predicted by the Mode
Coupling scenario that could further describe the attractive glasses behavior,
such as aging effects with new dynamical singularity points ruled by
logarithmic laws or the presence of a glass spinodal line
Pressure and Motion of Dry Sand -- Translation of Hagen's Paper from 1852
In a remarkable paper from 1852, Gotthilf Heinrich Ludwig Hagen measured and
explained two fundamental aspects of granular matter: The first effect is the
saturation of pressure with depth in a static granular system confined by silo
walls -- generally known as the Janssen effect. The second part of his paper
describes the dynamics observed during the flow out of the container -- today
often called the Beverloo law -- and forms the foundation of the hourglass
theory. The following is a translation of the original German paper from 1852.Comment: 4 pages, accepted for publication in Granular Matter, original
article (German) can be found under http://www.phy.duke.edu/~msperl/Janssen
The Jamming Transition in Granular Systems
Recent simulations have predicted that near jamming for collections of
spherical particles, there will be a discontinuous increase in the mean contact
number, Z, at a critical volume fraction, phi_c. Above phi_c, Z and the
pressure, P are predicted to increase as power laws in phi-phi_c. In
experiments using photoelastic disks we corroborate a rapid increase in Z at
phi_c and power-law behavior above phi_c for Z and P. Specifically we find
power-law increase as a function of phi-phi_c for Z-Z_c with an exponent beta
around 0.5, and for P with an exponent psi around 1.1. These exponents are in
good agreement with simulations. We also find reasonable agreement with a
recent mean-field theory for frictionless particles.Comment: 4 pages, 4 figures, 2 pages supplement; minor changes and
clarifications, 2 addtl. refs., accepted for publication in Phys. Rev. Let
Dynamic Glass Transition in Two Dimensions
The question about the existence of a structural glass transition in two
dimensions is studied using mode coupling theory (MCT). We determine the
explicit d-dependence of the memory functional of mode coupling for
one-component systems. Applied to two dimensions we solve the MCT equations
numerically for monodisperse hard discs. A dynamic glass transition is found at
a critical packing fraction phi_c^{d=2} = 0.697 which is above phi_c^{d=3} =
0.516 by about 35%. phi^d_c scales approximately with phi^d_{\rm rcp} the value
for random close packing, at least for d=2, 3. Quantities characterizing the
local, cooperative 'cage motion' do not differ much for d=2 and d=3, and we
e.g. find the Lindemann criterion for the localization length at the glass
transition. The final relaxation obeys the superposition principle, collapsing
remarkably well onto a Kohlrausch law. The d=2 MCT results are in qualitative
agreement with existing results from MC and MD simulations. The mean squared
displacements measured experimentally for a quasi-two-dimensional binary system
of dipolar hard spheres can be described satisfactorily by MCT for monodisperse
hard discs over four decades in time provided the experimental control
parameter Gamma (which measures the strength of dipolar interactions) and the
packing fraction phi are properly related to each other.Comment: 14 pages, 15 figure
Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation
Objective Mitochondrial disturbances of energy-generating systems in childhood are a heterogeneous group of disorders. The aim of this multi-site survey was to characterise the natural course of a novel mitochondrial disease with ATP synthase deficiency and mutation in the TMEM70 gene.
Methods Retrospective clinical data and metabolic profiles were collected and evaluated in 25 patients (14 boys, 11 girls) from seven European countries with a c. 317-2A -> G mutation in the TMEM70 gene.
Results Severe muscular hypotonia (in 92% of newborns), apnoic spells (92%), hypertrophic cardiomyopathy (HCMP; 76%) and profound lactic acidosis (lactate 5-36 mmol/l; 92%) with hyperammonaemia (100-520 mu mol/l; 86%) were present from birth. Ten patients died within the first 6 weeks of life. Most patients surviving the neonatal period had persisting muscular hypotonia and developed psychomotor delay. HCMP was non-progressive and even disappeared in some children. Hypospadia was present in 54% of the boys and cryptorchidism in 67%. Increased excretion of lactate and 3-methylglutaconic acid (3-MGC) was observed in all patients. In four surviving patients, life-threatening hyperammonaemia occurred during childhood, triggered by acute gastroenteritis and prolonged fasting.
Conclusions ATP synthase deficiency with mutation in TMEM70 should be considered in the diagnosis and management of critically ill neonates with early neonatal onset of muscular hypotonia, HCMP and hypospadias in boys accompanied by lactic acidosis, hyperammonaemia and 3-MGC-uria. However, phenotype severity may vary significantly. The disease occurs frequently in the Roma population and molecular-genetic analysis of the TMEM70 gene is sufficient for diagnosis without need of muscle biopsy in affected children
- …
