3,486 research outputs found
All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon carbide
We uncover the fine structure of a silicon vacancy in isotopically purified
silicon carbide (4H-SiC) and find extra terms in the spin Hamiltonian,
originated from the trigonal pyramidal symmetry of this spin-3/2 color center.
These terms give rise to additional spin transitions, which are otherwise
forbidden, and lead to a level anticrossing in an external magnetic field. We
observe a sharp variation of the photoluminescence intensity in the vicinity of
this level anticrossing, which can be used for a purely all-optical sensing of
the magnetic field. We achieve dc magnetic field sensitivity of 87 nT
Hz within a volume of mm at room temperature
and demonstrate that this contactless method is robust at high temperatures up
to at least 500 K. As our approach does not require application of
radiofrequency fields, it is scalable to much larger volumes. For an optimized
light-trapping waveguide of 3 mm the projection noise limit is below 100
fT Hz.Comment: 12 pages, 6 figures; additional experimental data and an extended
theoretical analysis are added in the second versio
Recommended from our members
One Sided Crossvalidation for Density Estimation
We introduce one-sided cross-validation to nonparametric kernel density estimation. The method is more stable than classical cross-validation and it has a better overall performance comparable to what we see in plug-in methods. One-sided cross-validation is a more direct date driven method than plugin methods with weaker assumptions of smoothness since it does not require a smooth pilot with consistent second derivatives. Our conclusions for one-sided kernel density cross-validation are similar to the conclusions obtained by Hart and Li (1998) when they introduced one-sided cross-validation in the regression context. An extensive simulation study conms that our one-sided cross-validation clearly outperforms the simple cross validation. We conclude with real data applications
Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide
Quantum systems can provide outstanding performance in various sensing
applications, ranging from bioscience to nanotechnology. Atomic-scale defects
in silicon carbide are very attractive in this respect because of the
technological advantages of this material and favorable optical and radio
frequency spectral ranges to control these defects. We identified several,
separately addressable spin-3/2 centers in the same silicon carbide crystal,
which are immune to nonaxial strain fluctuations. Some of them are
characterized by nearly temperature independent axial crystal fields, making
these centers very attractive for vector magnetometry. Contrarily, the
zero-field splitting of another center exhibits a giant thermal shift of -1.1
MHz/K at room temperature, which can be used for thermometry applications. We
also discuss a synchronized composite clock exploiting spin centers with
different thermal response.Comment: 8 pages, 7 figure
Recommended from our members
Continuous Chain Ladder: Reformulating and generalizing a classical insurance problem
The single most important number in the accounts of a non-life insurance company is likely to be the estimate of the outlying liabilities. Since non-life insurance is a major part of our financial industry (amounting to up to 5% of BNP in western countries), it is perhaps surprising that mathematical statisticians and experts of operational research (the natural experts of the underlying problem) have left the intellectual work on estimating this number to actuaries. This paper establishes this important problem in a vocabulary accessible to experts of operations research and mathematical statistics and it can be seen as an open invitation to these two important groups of scholars to join this research. The paper introduces a number of new methodologies and approaches to estimating outstanding liabilities in non-life insurance. In particular it reformulates the classical actuarial technique as a histogram type of approach and improves this classical technique by replacing this histogram by a kernel smoother
Prototyping of petalets for the Phase-II Upgrade of the silicon strip tracking detector of the ATLAS Experiment
In the high luminosity era of the Large Hadron Collider, the HL-LHC, the
instantaneous luminosity is expected to reach unprecedented values, resulting
in about 200 proton-proton interactions in a typical bunch crossing. To cope
with the resultant increase in occupancy, bandwidth and radiation damage, the
ATLAS Inner Detector will be replaced by an all-silicon system, the Inner
Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and
exploits the concept of modularity. Prototyping and testing of various strip
detector components has been carried out. This paper presents the developments
and results obtained with reduced-size structures equivalent to those foreseen
to be used in the forward region of the silicon strip detector. Referred to as
petalets, these structures are built around a composite sandwich with embedded
cooling pipes and electrical tapes for routing the signals and power. Detector
modules built using electronic flex boards and silicon strip sensors are glued
on both the front and back side surfaces of the carbon structure. Details are
given on the assembly, testing and evaluation of several petalets. Measurement
results of both mechanical and electrical quantities are shown. Moreover, an
outlook is given for improved prototyping plans for large structures.Comment: 22 pages for submission for Journal of Instrumentatio
Reversible and Irreversible Interactions of Poly(3-hexylthiophene) with Oxygen Studied by Spin-Sensitive Methods
Understanding of degradation mechanisms in polymer:fullerene
bulk-heterojunctions on the microscopic level aimed at improving their
intrinsic stability is crucial for the breakthrough of organic photovoltaics.
These materials are vulnerable to exposure to light and/or oxygen, hence they
involve electronic excitations. To unambiguously probe the excited states of
various multiplicities and their reactions with oxygen, we applied combined
magneto-optical methods based on multifrequency (9 and 275 GHz) electron
paramagnetic resonance (EPR), photoluminescence (PL), and PL-detected magnetic
resonance (PLDMR) to the conjugated polymer poly(3-hexylthiophene) (P3HT) and
polymer:fullerene bulk heterojunctions (P3HT:PCBM; PCBM =
[6,6]-phenyl-C61-butyric acid methyl ester). We identified two distinct
photochemical reaction routes, one being fully reversible and related to the
formation of polymer:oxygen charge transfer complexes, the other one,
irreversible, being related to the formation of singlet oxygen under
participation of bound triplet excitons on the polymer chain. With respect to
the blends, we discuss the protective effect of the methanofullerenes on the
conjugated polymer bypassing the triplet exciton generation
Developmental time at which spontaneous, X-ray-induced and EMS-induced recessive lethal mutations become effective in Drosophila melanogaster
- …
