46 research outputs found
Choice biases in no-sample and delay testing in pigeons (Columba livia)
In experimental tasks that involve stimuli that vary along a quantitative continuum, some choice biases are commonly found. Take, for instance, a matching-to-sample task where animals must, following the presentation of sample stimuli (that differ in duration), choose between two or more comparison stimuli. In tests where no sample is presented there is usually a bias towards the comparison that is correct following the shortest sample. To examine some aspects of these choice biases, pigeons were trained in a symbolic matching-to-sample task with two durations of keylight as samples, where key pecking had to be maintained during sample presentation. Firstly, even though animals were required to attend to the sample, a preference for the "short" comparison in no-sample testing was found. This result disproves an account where this effect was hypothesized to happen due to non-programmed learning resulting from the animals failing to attend to some trials. Secondly, even though a bias for "short" was found in both no-sample and delay testing, the extent of the biases differed between tasks, thus suggesting that forgetting the sample presented during a delay does not necessarily land the animal in a state similar to presenting no sample at all to begin with.The present study was supported by the Portuguese Foundation for Science and Technology and the Portuguese Ministry of Science, Technology and Higher Education through national funds. It was also co-financed by the European Regional Development Fund (FEDER)-through COMPETE2020-under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007653)
Spatial Orientation in Japanese Quails (Coturnix coturnix japonica)
Finding a given location can be based on a variety of strategies, for example on the estimation of spatial relations between landmarks, called spatial orientation. In galliform birds, spatial orientation has been demonstrated convincingly in very young domestic chicks. We wanted to know whether adult Japanese quails (Coturnix coturnix japonica) without food deprivation are also able to use spatial orientation. The quails had to learn the relation of a food location with four conspicuous landmarks which were placed in the corners of a square shaped arena. They were trained to find mealworms in three adjacent food cups in a circle of 20 such cups. The rewarded feeders were located during training between the same two landmarks each of which showed a distinct pattern. When the birds had learned the task, all landmarks were displaced clockwise by 90 degrees. When tested in the new situation, all birds redirected their choices with respect to the landmark shift. In subsequent tests, however, the previously correct position was also chosen. According to our results, quails are using conspicuous landmarks as a first choice for orientation. The orientation towards the previously rewarded location, however, indicates that the neuronal representation of space which is used by the birds also includes more fine grain, less conspicuous cues, which are probably also taken into account in uncertain situations. We also presume that the rare orientation towards never rewarded feeders may be due to a foraging strategy instead of being mistakes
Insect Brains Use Image Interpolation Mechanisms to Recognise Rotated Objects
Recognising complex three-dimensional objects presents significant challenges to visual systems when these objects are rotated in depth. The image processing requirements for reliable individual recognition under these circumstances are computationally intensive since local features and their spatial relationships may significantly change as an object is rotated in the horizontal plane. Visual experience is known to be important in primate brains learning to recognise rotated objects, but currently it is unknown how animals with comparatively simple brains deal with the problem of reliably recognising objects when seen from different viewpoints. We show that the miniature brain of honeybees initially demonstrate a low tolerance for novel views of complex shapes (e.g. human faces), but can learn to recognise novel views of stimuli by interpolating between or ‘averaging’ views they have experienced. The finding that visual experience is also important for bees has important implications for understanding how three dimensional biologically relevant objects like flowers are recognised in complex environments, and for how machine vision might be taught to solve related visual problems
Respiratory Infections by HMPV and RSV Are Clinically Indistinguishable but Induce Different Host Response in Aged Individuals
Background: Human metapneumovirus and respiratory syncytial virus can cause severe respiratory diseases, especially in infants, young children, and the elderly. So far it remains unclear why infections in the elderly become life threatening despite the presence of neutralizing antibodies in the serum, and to which extent double infections worsen the clinical course. Methods: Young and aged BALB/c-mice were infected with RSV or/and HMPV. Appearance of the mice was observed during course of infection. On day 5 p.i. animals were dispatched by cervical dislocation and levels of TNF-a and NF-kB were determined. Results: The observation of activity, weight and appearance of the different mice showed no differences among the tested groups. Despite this, the immunologic response depends on the animals ’ age and the virus they were infected with. In young animals, NF-kB levels were elevated if infected with HMPV and HMPV/RSV but remained low in RSV infections, whereas in aged animals the opposite was observed: solely RSV-infected animals showed elevated levels of NF-kB. TNF-a was slightly elevated in HMPV-infected young and old animals, but only in young animals this elevation was significant. Conclusions: Contrary to other studies, no weight loss or change in activity despite productive lung infection with the different viruses were observed. This may be due to the weaker anaesthesia or the lesser volume of virus solution used
Recognition by humans and pigeons of novel views of 3-D objects and their photographs.
Humans and pigeons were trained to discriminate between 2 views of actual 3-D objects or their photographs. They were tested on novel views that were either within the closest rotational distance between the training views (interpolated) or outside of that range (extrapolated). When training views were 60 degrees apart, pigeons, but not humans, recognized novel views of actual objects better than their pictures. Further, both species recognized interpolated views of both stimulus types better than extrapolated views, but a single distinctive geon enhanced recognition of novel views only for humans. When training views were 90 degrees apart, pigeons recognized interpolated views better than extrapolated views with actual objects but not with photographs. Thus, pigeons may represent actual objects differently than their pictures
View combination in moving objects: The role of motion in discriminating between novel views of similar and distinctive objects by humans and pigeons
Spatial encoding in mountain chickadees: features overshadow geometry.
Encoding the global geometric shape of an enclosed environment is a principal means of orientation in human and non-human animals. Animals spontaneously encode the geometry of an enclosure even when featural information is available. Although features can be used, they typically do not overshadow geometry. However, all previously tested organisms have been reared in human-made environments with salient geometrical cues. Here, we show that wild-caught mountain chickadees (Poecile gambeli) do not spontaneously encode the geometry of an enclosure when salient features are present near the goal. However, chickadees trained without salient features encode geometric information, but this encoding is overshadowed by features
