1,234 research outputs found
Analysis of the -CSA-ES with Repair by Projection Applied to a Conically Constrained Problem
Theoretical analyses of evolution strategies are indispensable for gaining a
deep understanding of their inner workings. For constrained problems, rather
simple problems are of interest in the current research. This work presents a
theoretical analysis of a multi-recombinative evolution strategy with
cumulative step size adaptation applied to a conically constrained linear
optimization problem. The state of the strategy is modeled by random variables
and a stochastic iterative mapping is introduced. For the analytical treatment,
fluctuations are neglected and the mean value iterative system is considered.
Non-linear difference equations are derived based on one-generation progress
rates. Based on that, expressions for the steady state of the mean value
iterative system are derived. By comparison with real algorithm runs, it is
shown that for the considered assumptions, the theoretical derivations are able
to predict the dynamics and the steady state values of the real runs.Comment: This is a PREPRINT of an article that has been accepted for
publication in the journal MIT Press Evolutionary Computation (ECJ). 25 pages
+ supplementary material. The work was supported by the Austrian Science Fund
FWF under grant P29651-N3
Data presentation techniques for rotating machinery malfunction diagnosis
Baseline steady state data is excellent for documentation of vibration signals at normal operating conditions. Assuming that a set of initial data was acquired with the machinery in a good state of repair, any future changes or deterioration in mechanical condition can be easily compared to the baseline information. Often this type of comparison will yield sufficient information for evaluation of the problem. However, many malfunctions require the analysis of transient data in order to identify the malfunction. Steady-state data formats consist of: Time Base Waveform, Orbit, Spectrum. Transient data formats consist of: Polar, Bode, Cascade. Our objective is to demonstrate the use of the above formats to diagnose a machine malfunction. A turbine-driven compressor train is chosen as an example. The machine train outline drawing is shown
The solubility and oxidation state of nickel in silicate melt at low oxygen fugacities: Results using a mechanically assisted equilibration technique
The solubility of Ni in a silicate melt has been measured using a new, mechanically assisted equilibration technique over a wide range of controlled ƒO2 values. The melt composition corresponds to the 1 atm eutectic in the system CaAl2Si2O8-CaMgSi2O6 + 10 wt% CaO. The experiments were performed at 1300°C and over an ƒO2 range of 10−8.5 to 10−13.75, and over a temperature range of 1270 to 1390°C at a constant gas mixing ratio ( ). The experiment consists of a sample of melt contained within a crucible of Ni metal and held in a 1 atm gas mixing furnace. A Ni spindle is entered into the sample from above and continuously rotated at a constant angular velocity using a viscometer head. The stirring of the sample serves to accelerate the approach to equilibrium between the liquid sample and the metal crucible (and spindle). This arrangement allows relatively rapid equilibration of Ni content following changes to higher or lower ƒO2 values. Samples of the melt may be taken at any time for analysis and thus the equilibrium solubility of Ni in the silicate melt may be determined from unambiguous experimental reversals. The Ni contents of samples, analysed both by INAA and by ICP-AES, range from 25 to 5300 ppm.
The data presented in this paper indicate that the oxidation state of Ni in the investigated melt is Ni2+ over the entire range of ƒO2 investigated. This conclusion contrasts with recent reports in the literature of an inflection in the ƒO2 dependence of Ni solubility, which has been interpreted as solution of neutral Ni at low ƒO2 (Morse et al., 1991; Colson, 1992; Ehlers et al., 1992). We also present data for the temperature dependence of Ni solubility in the investigated melt. The solubility decreases with increasing temperature at constant ƒO2. The present results are in good agreement with the metal-loop-equilibration experiments reported by Holzheid et al. (1994)
The solubility of rhenium in silicate melts: Implications for the geochemical properties of rhenium at high temperatures
The solubility of rhenium (Re) in a haplobasaltic melt (anorthite-diopside eutectic composition) has been experimentally determined using the mechanically assisted equilibration technique at 1400°C as a function of oxygen fugacity (10−12 < fO2 ≤ 10−7 bar), imposed by CO-CO2 gas mixtures. Samples were analysed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). This is a true microanalytical technique, which allows small-scale sample heterogeneity to be detected, while providing a limit of detection of 2 ppb Re. Time-resolved LA-ICP-MS spectra revealed the presence of suboptically sized micronuggets of Re in all samples, which, because they are present at the 0.5 to 10 ppm level, dominate the true solubilities of Re (<1 ppm at the conditions of the experiment) in bulk analyses of the samples. Nevertheless, the micronuggets could be filtered out from the time-resolved spectra to reveal accurate values of the true Re solubility. A number of time series of samples were taken at constant fO2 to demonstrate that the solubilities converge to a constant value. In addition, solubilities were measured after increasing and decreasing the imposed fO2. The results show that Re dissolves in the silicate melt as ReO2 (Re4+) and ReO3 (Re6+) species, with the latter predominating at typical terrestrial upper-mantle oxygen fugacities. The total solubility of Re is described by the following expression (fO2 in bars): [Re/ppb] = 9.7(±1.9) × 109 (fO2) + 4.2 (±0.3) × 1014 (fO2)1.5Assuming an activity coefficient for Re in Fe-rich metal of 1, this gives a value of DRemet/sil of 5 × 1010 at log fO2 = IW-2, appropriate for metal-silicate partitioning in an homogenously accreting Earth. Thus, Re is indeed very highly siderophile, and the mantle’s abundance cannot be explained by homogenous accretion
Dihedral-Angle-Controlled Crossover from Static Hole Delocalization to Dynamic Hopping in Biaryl Cation Radicals
In cases of coherent charge-transfer mechanism in biaryl compounds the rates follow a squared cosine trend with varying dihedral angle. Herein we demonstrate using a series of biaryl cation radicals with varying dihedral angles that the hole stabilization shows two different regimes where the mechanism of the hole stabilization switches over from (static) delocalization over both aryl rings to (dynamic) hopping. The experimental data and DFT calculations of biaryls with different dihedral angles unequivocally support that a crossover from delocalization to hopping occurs at a unique dihedral angle where the electronic coupling (Hab) is one half of reorganization (λ), that is, Hab=λ/2. The implication of this finding in non-coherent charge-transfer rates is being investigated
Preliminary examination of the Yamato-86032 lunar meteorite: II. Major and trace element chemistry
The chemical composition of the new lunar meteorite Yamato-86032 has been studied by several laboratories in a consortium study. A preliminary report on the first analytical results from seven laboratories is given in this paper. The meteorite, which is the largest lunar meteorite recovered so far, is more heavily shocked than the other five lunar meteorites, which makes it difficult to classify the rock exactly. Although it may be classified as an anorthositic breccia the trace element composition of Y-86032 is somewhat different from the composition of the other known lunar meteorites. The major element chemistry of Y-86032 is similar to the other lunar meteorites, except for the iron content, which is lower by a factor of about 1. 4. Since the magnesium abundance is nearly identical there is a disparity in the mg ratio. The REE abundances in Y-86032 are very low and comparable to Y-82192/3. There is no evidence of any KREEP component. The abundances of several lithophile and incompatible elements are lower in Y-86032 than in the other lunar meteorites. The siderophile element contents are low and vary between individual chips. Sc, Cr, Mn, and Co have significantly lower abundances than in Y-82192/3. The chemical investigations demonstrate that Y-86032 is a new and important sample from the lunar highlands
Model-independent extraction of matrix elements from top-quark measurements at hadron colliders
Current methods to extract the quark-mixing matrix element from
single-top production measurements assume that : top quarks decay into quarks with 100% branching fraction,
s-channel single-top production is always accompanied by a quark and
initial-state contributions from and quarks in the -channel
production of single top quarks are neglected. Triggered by a recent
measurement of the ratio
performed by the D0 collaboration, we consider a extraction method
that takes into account non zero d- and s-quark contributions both in
production and decay. We propose a strategy that allows to extract consistently
and in a model-independent way the quark mixing matrix elements ,
, and from the measurement of and from single-top
measured event yields. As an illustration, we apply our method to the Tevatron
data using a CDF analysis of the measured single-top event yield with two jets
in the final state one of which is identified as a -quark jet. We constrain
the matrix elements within a four-generation scenario by combining
the results with those obtained from direct measurements in flavor physics and
determine the preferred range for the top-quark decay width within different
scenarios.Comment: 36 pages, 17 figure
Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector
The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
