2,296 research outputs found

    KM3NeT:a large underwater neutrino telescope in the Mediterranean Sea

    Full text link
    High energy neutrinos produced in astrophysical processes will allow for a new way of studying the universe. In order to detect the expected flux of high energy neutrinos from specific astrophysical sources, neutrino telescopes of a scale of a km^3 of water will be needed. A Northern Hemisphere detector is being proposed to be sited in a deep area of the Mediterranean Sea. This detector will provide complimentary sky coverage to the IceCube detector being built at the South Pole. The three neutrino telescope projects in the Mediterranean (ANTARES, NEMO and NESTOR) are partners in an effort to design, and build such a km^3 size neutrino telescope, the KM3NeT. The EU is funding a 3-year Design Study; the status of the Design Study is presented and some technical issues are discussed.Comment: 4 pages, 3 figures, Prepared for the 10th International Conference on Astroparticle and Underground Physics (TAUP 2007), Sendai, Japan, 11-15 Sep 200

    Intermixing at the InxSy/Cu2ZnSn(S,Se)4 Heterojunction and Its Impact on the Chemical and Electronic Interface Structure

    Get PDF
    We report on the chemical and electronic structure of the interface between a thermally co-evaporated InxSy buffer and a Cu2ZnSn(S,Se)4 (CZTSSe) absorber for thin-film solar cells. To date, such cells have achieved energy conversion efficiencies up to 8.6%. Using surface-sensitive X-ray and UV photoelectron spectroscopy, combined with inverse photoemission and bulk-sensitive soft X-ray emission spectroscopy, we find a complex character of the buffer layer. It includes oxygen, as well as selenium and copper that diffused from the absorber into the InxSy buffer, exhibits an electronic band gap of 2.50 ± 0.18 eV at the surface, and leads to a small cliff in the conduction band alignment at the InxSy/CZTSSe interface. After an efficiency-increasing annealing step at 180 °C in nitrogen atmosphere, additional selenium diffusion leads to a reduced band gap at the buffer layer surface (2.28 ± 0.18 eV)

    Flux of Primordial Monopoles

    Get PDF
    We discuss how in supersymmetric models with D and F-flat directions, a primordial monopole flux of order 10^{-16} - 10^{-18} cm^{-2} sec^{-1} sr^{-1} can coexist with the observed baryon asymmetry. A modified Affleck-Dine scenario yields the desired asymmetry if the monopoles are superheavy (~ 10^{13}-10^{18} GeV). For lighter monopoles with masses ~ 10^{9}-10^{12} GeV, the baryon asymmetry can arise via TeV scale leptogenesis.Comment: 17 pages, 4 figures, revtex

    The Indirect Search for Dark Matter with IceCube

    Full text link
    We revisit the prospects for IceCube and similar kilometer-scale telescopes to detect neutrinos produced by the annihilation of weakly interacting massive dark matter particles (WIMPs) in the Sun. We emphasize that the astrophysics of the problem is understood; models can be observed or, alternatively, ruled out. In searching for a WIMP with spin-independent interactions with ordinary matter, IceCube is only competitive with direct detection experiments if the WIMP mass is sufficiently large. For spin-dependent interactions IceCube already has improved the best limits on spin-dependent WIMP cross sections by two orders of magnitude. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while being within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes have the opportunity to play an important as well as complementary role in the search for particle dark matter.Comment: 17 pages, 10 figures, published in the New Journal of Physics 11 105019 http://www.iop.org/EJ/abstract/1367-2630/11/10/105019, new version submitted to correct Abstract in origina

    Charges on Strange Quark Nuggets in Space

    Get PDF
    Since Witten's seminal 1984 paper on the subject, searches for evidence of strange quark nuggets (SQNs) have proven unsuccessful. In the absence of experimental evidence ruling out SQNs, the validity of theories introducing mechanisms that increase their stability should continue to be tested. To stimulate electromagnetic SQN searches, particularly space searches, we estimate the net charge that would develop on an SQN in space exposed to various radiation baths (and showers) capable of liberating their less strongly bound electrons, taking into account recombination with ambient electrons. We consider, in particular, the cosmic background radiation, radiation from the sun, and diffuse galactic and extragalactic γ\gamma -ray backgrounds. A possible dramatic signal of SQNs in explosive astrophysical events is noted.Comment: CitationS added, new subsection added, more discussion, same numerical result

    Gneiss-charnockite transformation at Kottavattam, Southern Kerala (India)

    Get PDF
    At Kottavattam, leucocratic granitic garnet-biotite gneisses (age less than 2 Ga) were partially transformed to coarse-grained charnockite along a system of conjugate fractures (N70E and N20W) and the foliation planes (N60 to 80W; dip 80 to 90 SW) about 550 m.y. ago. To examine and quantify changes in fabric, mineralogy, pore fluids and chemical composition associated with this process, large rock specimens showing gneiss-charnockite transition were studied in detail. The results of the present study corroborate the concept that charnockite formation at Kottavattam is an internally-generated phenomenon and was not triggered by the influx of carbonic fluids from a deep-seated source. It is suggested that charnockitization was caused by the following mechanism: (1) near-isothermal decompression during uplift of the gneiss complex led to an increase of the pore fluid pressure (P sub fluid greater than P sub lith) which - in a regime of anisotropic stress - triggered or at least promoted the development of conjugate fractures; (2) the simultaneous release of pore fluids from bursting fluid inclusions and their escape into the developing fracture system resulted in a drop of fluid pressure; and (3) the internal generation and buffering of the fluids and their, probably, limited migration in an entirely granitic rock system explains the absence of any significant metasomatic mass transfer

    Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    Get PDF
    Maximal power output occurs when subjects perform ballistic exercises using loads of ~30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of load on power output was: 30% > 40% > 50% = 60%. CONCLUSION: Loads of 40% and 30% of MIF elicit maximal power output during dynamic leg presses and bench presses, respectively. These findings are similar to those obtained when loading is based on 1-RM

    Supernova pointing with low- and high-energy neutrino detectors

    Full text link
    A future galactic SN can be located several hours before the optical explosion through the MeV-neutrino burst, exploiting the directionality of ν\nu-ee-scattering in a water Cherenkov detector such as Super-Kamiokande. We study the statistical efficiency of different methods for extracting the SN direction and identify a simple approach that is nearly optimal, yet independent of the exact SN neutrino spectra. We use this method to quantify the increase in the pointing accuracy by the addition of gadolinium to water, which tags neutrons from the inverse beta decay background. We also study the dependence of the pointing accuracy on neutrino mixing scenarios and initial spectra. We find that in the ``worst case'' scenario the pointing accuracy is 88^\circ at 95% C.L. in the absence of tagging, which improves to 33^\circ with a tagging efficiency of 95%. At a megaton detector, this accuracy can be as good as 0.60.6^\circ. A TeV-neutrino burst is also expected to be emitted contemporaneously with the SN optical explosion, which may locate the SN to within a few tenths of a degree at a future km2^2 high-energy neutrino telescope. If the SN is not seen in the electromagnetic spectrum, locating it in the sky through neutrinos is crucial for identifying the Earth matter effects on SN neutrino oscillations.Comment: 13 pages, 7 figures, Revtex4 format. The final version to be published in Phys. Rev. D. A few points in the original text are clarifie
    corecore