423 research outputs found

    Increasing the fungicidal action of Amphotericin B by inhibiting the Nitric Oxide-Dependent tolerance pathway

    Get PDF
    Amphotericin B (AmB) induces oxidative and nitrosative stresses, characterized by production of reactive oxygen and nitrogen species, in fungi. Yet, how these toxic species contribute to AmB-induced fungal cell death is unclear. We investigated the role of superoxide and nitric oxide radicals in AmB's fungicidal activity in Saccharomyces cerevisiae, using a digital microfluidic platform, which enabled monitoring individual cells at a spatiotemporal resolution, and plating assays. The nitric oxide synthase inhibitor L-NAME was used to interfere with nitric oxide radical production. L-NAME increased and accelerated AmB-induced accumulation of superoxide radicals, membrane permeabilization, and loss of proliferative capacity in S. cerevisiae. In contrast, the nitric oxide donor S-nitrosoglutathione inhibited AmB's action. Hence, superoxide radicals were important for AmB's fungicidal action, whereas nitric oxide radicals mediated tolerance towards AmB. Finally, also the human pathogens Candida albicans and Candida glabrata were more susceptible to AmB in the presence of L-NAME, pointing to the potential of AmB-L-NAME combination therapy to treat fungal infections.Kim Vriens acknowledges the receipt of a predoctoral grant from the Flanders Innovation & Entrepeneurship Agency (IWT-SB 111016); Karin Thevissen acknowledges the receipt of a mandate of Industrial Research Fund (KU Leuven). In addition, the research leading to these results has received funding from the Research Foundation - Flanders (FWO G086114N and G080016N) and the KU Leuven (OT 13/ 058 and IDO 10/012, IOF KP/12/009 Atheromix, IOF KP/ 12/002 Nanodiag). This work was partially developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). Belém Sampaio-Marques is supported by the fellowship SFRH/BPD/90533/2012 funded by Fundação para a Ciência e Tecnologia (FCT, Portugal).info:eu-repo/semantics/publishedVersio

    The plant decapeptide OSIP108 can alleviate mitochondrial dysfunction induced by cisplatin in human cells

    Get PDF
    We investigated the effect of the Arabidopsis thaliana-derived decapeptide OSIP108 on human cell tolerance to the chemotherapeutic agent cisplatin (Cp), which induces apoptosis and mitochondrial dysfunction. We found that OSIP108 increases the tolerance of HepG2 cells to Cp and prevents Cp-induced changes in basic cellular metabolism. More specifically, we demonstrate that OSIP108 reduces Cp-induced inhibition of respiration, decreases glycolysis and prevents Cp-uptake in HepG2 cells. Apart from its protective action against Cp in human cells, OSIP108 also increases the yeast Saccharomyces cerevisiae tolerance to Cp. A limited yeast-based study of OSIP108 analogs showed that cyclization does not severely affect its activity, which was further confirmed in HepG2 cells. Furthermore, the similarity in the activity of the D-stereoisomer (mirror image) form of OSIP108 with the L stereoisomer suggests that its mode of action does not involve binding to a stereospecific receptor. In addition, as OSIP108 decreases Cp uptake in HepG2 cells and the anti-Cp activity of OSIP108 analogs without free cysteine is reduced, OSIP108 seems to protect against Cp-induced toxicity only partly via complexation. Taken together, our data indicate that OSIP108 and its cyclic derivatives can protect against Cp-induced toxicity and, thus, show potential as treatment options for mitochondrial dysfunction- and apoptosis-related conditions

    Multi-delay arterial spin-labeled perfusion estimation with biophysics simulation and deep learning

    Full text link
    Purpose: To develop biophysics-based method for estimating perfusion Q from arterial spin labeling (ASL) images using deep learning. Methods: A 3D U-Net (QTMnet) was trained to estimate perfusion from 4D tracer propagation images. The network was trained and tested on simulated 4D tracer concentration data based on artificial vasculature structure generated by constrained constructive optimization (CCO) method. The trained network was further tested in a synthetic brain ASL image based on vasculature network extracted from magnetic resonance (MR) angiography. The estimations from both trained network and a conventional kinetic model were compared in ASL images acquired from eight healthy volunteers. Results: QTMnet accurately reconstructed perfusion Q from concentration data. Relative error of the synthetic brain ASL image was 7.04% for perfusion Q, lower than the error using single-delay ASL model: 25.15% for Q, and multi-delay ASL model: 12.62% for perfusion Q. Conclusion: QTMnet provides accurate estimation on perfusion parameters and is a promising approach as a clinical ASL MRI image processing pipeline.Comment: 32 pages, 5 figure

    Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa.

    Get PDF
    Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies

    Efficient Folded Attention for 3D Medical Image Reconstruction and Segmentation

    Full text link
    Recently, 3D medical image reconstruction (MIR) and segmentation (MIS) based on deep neural networks have been developed with promising results, and attention mechanism has been further designed to capture global contextual information for performance enhancement. However, the large size of 3D volume images poses a great computational challenge to traditional attention methods. In this paper, we propose a folded attention (FA) approach to improve the computational efficiency of traditional attention methods on 3D medical images. The main idea is that we apply tensor folding and unfolding operations with four permutations to build four small sub-affinity matrices to approximate the original affinity matrix. Through four consecutive sub-attention modules of FA, each element in the feature tensor can aggregate spatial-channel information from all other elements. Compared to traditional attention methods, with moderate improvement of accuracy, FA can substantially reduce the computational complexity and GPU memory consumption. We demonstrate the superiority of our method on two challenging tasks for 3D MIR and MIS, which are quantitative susceptibility mapping and multiple sclerosis lesion segmentation.Comment: 9 pages, 7 figure
    corecore